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We study the optimal design of incentives and information in multi-agent settings with

externalities. A principal privately contracts with a set of agents who then simultaneously

choose a binary action. There is a hidden state of nature that we call the fundamental state.

The principal offers each agent a contingent individual allocation, and possibly gives agents

information about the fundamental state and each other’s contracts and information. Each

agent’s payoff depends on the profile of agents’ actions, his allocation, and the fundamental

state. We solve for the principal’s incentive scheme that maximizes her expected payoff

subject to inducing a desired action profile as the unique rationalizable outcome.

Our main result is a simplification of this multi-agent problem to a two-step procedure

in which information is designed agent-by-agent: the principal chooses a fundamental-state-

contingent distribution over agent rankings, and then, separately for each agent, the agent’s

information about the fundamental state and realized ranking. We highlight that such a

ranking state together with the fundamental state—what we call the total state—is the

right state variable for the principal’s problem. Similar state variables appear in prior work

on unique equilibrium implementation in supermodular games; most closely related, Oyama

and Takahashi (2020), Morris, Oyama and Takahashi (2020), and Halac, Lipnowski and

Rappoport (2021a). Our analysis elucidates that the total state captures agents’ relevant

uncertainty whenever their incentives are pinned down by their relative order in the sequence

of deletion of dominated actions.

We illustrate our results by studying a team-effort problem, related to Winter (2004),

Moriya and Yamashita (2020), and Halac, Lipnowski and Rappoport (2021a). Our two-step
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procedure permits an explicit characterization of the principal’s solution, and we describe

how this solution varies with the environment. We find that the principal may want to give

agents no information, public information, or private information about the total state.

Our paper joins a growing literature on unique implementation, including work on incen-

tive contracts and on information design under adversarial equilibrium selection. In addition

to the papers just cited, see Segal (2003), Bernstein and Winter (2012), Chassang, Del Carpio

and Kapon (2020), Halac, Kremer and Winter (2020, 2021b), and Camboni and Porcellacchia

(2021) on incentive design; Hoshino (2019), Mathevet, Perego and Taneva (2020), Inostroza

and Pavan (2021), and Li, Song and Zhao (2021) on information design; and work related

to the latter strand such as Kajii and Morris (1997). Our paper studies both of these tools

jointly. We provide a general methodology that can be useful for various applications in

which strategic uncertainty may be addressed with incentives and information.

1. Model

A principal contracts with a set N = {1, . . . , N} of agents. There is a state of nature, or

fundamental state, drawn from a finite set Ω according to a probability distribution p0 ∈ ∆Ω

with full support.1 The principal offers each agent i ∈ N a private allocation xi ∈ Xi, and

possibly gives agents information about the fundamental state and each other’s contracts.

Agents then simultaneously choose a binary action, either 1 or 0.

Formally, a principal’s incentive scheme is σ = 〈q, χ〉, where q ∈ ∆
[
(N2)N × Ω

]
is a

prior with marginal distribution p0 on Ω and χ = (χi)i∈N is an allocation rule, with χi :

supp(margi q)→ Xi. Let T qi := supp(margi q) denote the support of the marginal of q along

dimension i and T q :=
∏

i∈N T
q
i . The interpretation is that the principal privately informs

each agent i ∈ N of his type ti ∈ T qi and, through the allocation rule, of his contingent

allocation from every profile of actions in every fundamental state.2 Hence, an agent may

1 Throughout, given a set Z, let ∆Z denote the set of finite-support probability distributions over Z.
2 Given the finite type restriction, since the type itself is a strategically irrelevant label (Dekel, Fudenberg
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face uncertainty about other agents’ contracts and about the fundamental state, but is

completely informed about his own contract.3 The choice of q, specifically the correlation

between an agent’s type and others’ types and the fundamental state, determines how much

an agent knows about others’ contracts and the fundamental state.

An incentive scheme σ = 〈q, χ〉 defines a Bayesian game between the agents. In this game,

〈(T qi )i∈N ,Ω, q〉 is a common-prior type space; agents simultaneously make type-contingent

decisions of whether to choose 1 or 0; and agent i’s payoff is a function ui : 2N ×Xi×Ω→ R

of the set of agents who choose 1, his allocation, and the fundamental state. The principal

wishes to uniquely induce all agents to choose 1 (with probability 1), with her payoff in

such event given by
∑

i∈N vi(xi, ω) for vi : Xi × Ω → R bounded above. Say an action is

rationalizable for an agent type if it is interim correlated rationalizable, and say an incentive

scheme σ = 〈q, χ〉 is unique implementation feasible (UIF) if all agent types choosing 1 is

the unique rationalizable outcome of the Bayesian game induced by σ. The principal solves

sup
σ is UIF

V (σ), (1)

where V (σ) is her total expected payoff given scheme σ = 〈q, χ〉 and all agents choosing 1:

V (σ) =
∑

t∈Tσ , ω∈Ω

q(t, ω)
∑
i∈N

vi (χi(ti), ω) .

We make a dominant-allocation assumption that says that for each agent i ∈ N , there

exists xi ∈ Xi such that choosing action 1 is dominant:

min
J⊆N\{i},ω∈Ω

[ui(J ∪ {i}, xi, ω)− ui(J, xi, ω)] > 0.

and Morris, 2007, Proposition 1), it is immaterial that types are labeled with natural number pairs.
3 Note however that the space of allocations can be rich. For example, if Xi stipulates fundamental-

state-contingent payments, then the assumption that agents observe their own contracts is consistent with
them facing uncertainty about their own payments. Even so, this assumption can entail a payoff loss for the
principal in fixed settings, as we demonstrate in Section V of Halac, Lipnowski and Rappoport (2021a).
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Under this assumption, the principal can always make choosing 1 uniquely rationalizable.4

Our focus is on solving for optimal incentive schemes that achieve this goal. The principal’s

problem in (1) does not generally admit a maximum, but en route to our characterization

of her optimal value, we will construct approximately optimal incentive schemes.5

Remark 1. A special case of our model is the case of a supermodular game, in which J 7→

ui(J ∪ {i}, xi, ω)− ui(J, xi, ω) is a weakly increasing map on 2N\{i} for every i ∈ N , xi ∈ Xi,

and ω ∈ Ω. In this case, the requirement that each type choosing action 1 be uniquely

rationalizable is equivalent to the requirement that it be a unique Bayes-Nash equilibrium.

Remark 2. We have assumed that the set of feasible profiles of allocations is a product set∏
i∈N Xi, and that the principal’s objective (conditional on all agents choosing 1) is additively

separable. Our tools can be useful even without these separability conditions, if we suitably

generalize our dominant-allocation assumption.6 In contrast, relaxing our assumptions that

actions are binary and agent preferences take a private-value form seems more challenging.

2. Solving for Optimal Schemes

We will find it convenient to express properties of an incentive scheme in terms of the

order its type realizations induce on agents. Denote by Π the set of all permutations on

N (i.e., all π ∈ NN with πi 6= πj for all distinct i, j ∈ N), and consider incentive schemes

σ = 〈q, χ〉 such that every positive-probability type profile t = (tRi , t
S
i )i∈N ∈ T q has tRi 6= tRj

for all distinct i, j ∈ N . Any such type profile t induces a ranking state π(t) ∈ Π given by

πi(t) = |{j ∈ N : tRj ≤ tRi }|. A key consequence of our analysis will be that the relevant

4 By combining our analysis with that in Morris, Oyama and Takahashi (2020), it may be possible to
weaken our dominant-allocation assumption.

5 That is, for any ε > 0, our proof constructs a UIF scheme σε such that V (σε) > supσ is UIF V (σ)− ε.
6 Specifically, our analysis implies that the principal’s program can still be reduced to a two-step procedure:

first, choose a fundamental-state-contingent distribution over what we will call ranking states and assign an
optimal principal value to any profile of agent beliefs about the fundamental and ranking states; second,
design an information structure concerning the realized fundamental and ranking states. If the principal’s
value is independent of the fundamental state, the analysis of Morris (2020) (and the classic work cited
therein), Ziegler (2020), or Arieli, Babichenko, Sandomirskiy and Tamuz (2021) can be applied.
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state variable for the principal’s problem consists of the ranking state π ∈ Π together with

the fundamental state ω ∈ Ω. We will refer to (π, ω) as the total state.

Given a prior q, agent i ∈ N , and type ti ∈ T qi , we have that ti’s belief µqi (·|ti) ∈ ∆(Π×Ω)

about the total state is given by

µqi (π̂, ω̂|ti) := qi
(
{t−i : π(ti, t−i) = π̂} × {ω̂}

∣∣ ti) for all π̂ ∈ Π, ω̂ ∈ Ω,

where qi : T qi → ∆(T q−i × Ω) is given by qi(t−i, ω|ti) := 1
margi q(ti)

q(ti, t−i, ω). The total state

distribution µq ∈ ∆(Π× Ω) is given by

µq(π̂, ω̂) := q ({t : π(t) = π̂} × {ω̂}) for all π̂ ∈ Π, ω̂ ∈ Ω.

For any agent i ∈ N and belief µi ∈ ∆(Π × Ω) that he might hold, let us define his

sufficient allocations xi ∈ Xi as those that induce the agent to choose action 1 under the

hypothesis that all agents j ∈ N \ {i} with rank πj < πi choose action 1. Letting

Ii(xi, π, ω) := min
J⊆N\{i}: J⊇{j∈N : πj<πi}

[ui(J ∪ {i}, xi, ω)− ui(J, xi, ω)] ,

the agent’s set of sufficient allocations is given by

X ∗i (µi) :=

{
xi ∈ Xi :

∑
π∈Π,ω∈Ω

µi(π, ω) Ii(xi, π, ω) > 0

}
.

By our dominant-allocation assumption, this set is nonempty as it contains allocation xi.

Definition 1. A strict ranking scheme is an incentive scheme σ = 〈q, χ〉 such that:

1. Every positive-probability t ∈ T q has tRi 6= tRj for all distinct i, j ∈ N .

2. Every i ∈ N and ti ∈ T qi have χi(ti) ∈ X ∗i (µqi (·|ti)).

The next lemma shows that strict ranking schemes are useful because they ensure choos-

ing 1 is uniquely rationalizable and, up to relabeling of types, constitute all such incentive
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schemes. See the Online Appendix for proofs of all of our results.

Lemma 1. Every strict ranking scheme is UIF. Moreover, if an incentive scheme σ is UIF,

there exists a strict ranking scheme σ∗ with V (σ∗) = V (σ).

The proof is constructive: we relabel types so that the order in which agents have action

0 eliminated in an iterated deletion sequence coincides with the ranking state π ∈ Π.

Lemma 1 implies that to solve the principal’s problem in (1), it is without loss to focus

on strict ranking schemes. For any agent i ∈ N and belief µi ∈ ∆(Π × Ω) that he might

hold, define the principal’s interim value function by

v∗i (µi) := sup
xi∈X ∗

i (µi)

∑
π∈Π,ω∈Ω

µi(π, ω) vi(xi, ω).

The principal’s problem is then to choose a prior in order to maximize the expectation of∑
i∈N v

∗
i (µi). Our main result is a simplification of this problem to a two-step procedure

in which information is designed agent-by-agent: first, the principal chooses a total state

distribution µ ∈ ∆(Π×Ω); second, separately for each agent, she chooses what information

to provide to the agent about the realized total state (π, ω). Formally, for any agent i ∈ N

and distribution µ ∈ ∆(Π× Ω), define

v̂∗i (µ) := sup
τi∈∆∆(Π×Ω)

∫
v∗i (µi) dτi(µi) subject to

∫
µi dτi(µi) = µ, (2)

which is the pointwise-lowest concave function above v∗i . Denote the set of allowable total

state distributions by M(p0) = {µ ∈ ∆(Π× Ω) : margΩµ = p0} . We obtain:

Theorem 1. The principal’s optimal value satisfies

sup
σ is UIF

V (σ) = sup
µ∈M(p0)

∑
i∈N

v̂∗i (µ).

The reduction in Theorem 1 is significant. Instead of optimizing over fundamental-state-

contingent distributions over type profiles q ∈ ∆
[
(N2)N × Ω

]
, the principal simply chooses
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a fundamental-state-contingent distribution over rankings µ ∈ ∆(Π × Ω). Then, agent-

by-agent, the principal solves the single-agent information design problem in (2)—a well

understood problem given the extensive literature on persuasion (see Kamenica, 2019).

The proof of Theorem 1 establishes that supσ is UIF V (σ) ≤ supµ∈M(p0)

∑
i∈N v̂

∗
i (µ) by

using Lemma 1 and program (2), and shows that this inequality holds with equality by

constructing a sequence of strict ranking schemes that approximates the payoff bound. The

construction is the same as that in Halac, Lipnowski and Rappoport (2021a), but with types

augmented to convey information about the total state.7

We close this section by noting that an optimum exists in many natural cases:

Definition 2. Say (µ, (τi)i∈N) is optimal if µ ∈ arg maxµ̃∈M(p0)

∑
i∈N v̂

∗
i (µ̃) and τi is an

optimum of program (2) defining v̂∗i (µ) for every i ∈ N .

Fact 1. If v∗i is upper semicontinuous for each i ∈ N , some optimal (µ, (τi)i∈N) exists.

3. Team effort with transfers

We illustrate our results by studying a simple team-effort problem. Our two-step procedure

permits an explicit characterization of the principal’s solution, and we describe how this

solution varies with the environment. In particular, we show that the principal may want to

give agents no information, public information, or private information about the total state.

Consider a special case of our model in which a set N = {1, 2} of agents privately choose

whether to work (choose 1) or shirk (choose 0) on a joint project. The fundamental state ω

is drawn uniformly from Ω = {1, 2} and determines agents’ costs of effort, given by ci(ω) > 0

for i ∈ N . The project succeeds with probability Pk if k agents work and the rest shirk, and

the allocation xi ∈ Xi = R+ is a bonus that the principal pays agent i in the case of success.

We thus write agent i’s payoff as ui(J, xi, ω) = P|J |xi − ci(ω)1i∈J . The principal’s goal is to

uniquely induce the agents to work at the least possible incentive cost, so vi(xi, ω) = −xi.
7 In that paper’s setting, this augmentation was not needed as providing no information was optimal.
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We assume P is strictly increasing (i.e., 1 ≥ P2 > P1 > P0 ≥ 0) and strictly supermodular

(i.e., P2 − P1 > P1 − P0), meaning that agents’ efforts are productive and complementary.

Since an agent’s incentive to work is then always increasing in the other agent’s effort, the

agent’s set of sufficient allocations takes a simple form. Specifically, denote by µΠ
i ∈ ∆Π

and µΩ
i ∈ ∆Ω the marginals of µi along Π and Ω respectively, and let πi ∈ Π be the ranking

state in which agent i is ranked second. Defining the expected marginal product

ιi(µ
Π
i ) :=

[
1− µΠ

i (πi)
]

(P1 − P0) + µΠ
i (πi)(P2 − P1),

and given that the agent’s expected cost of effort is ci(µ
Ω
i ) :=

∑
ω∈Ω µ

Ω
i (ω)ci(ω), direct com-

putation yields X ∗i (µi) =
{
xi ∈ Xi : xiιi(µ

Π
i ) > ci(µ

Ω
i )
}
. Hence, v∗i (µi) = −ci(µΩ

i )/ιi(µ
Π
i ),

and replacing the objective with its negative, the principal’s problem can be written as

inf
µ∈M(p0),

τ1,τ2∈∆∆(Π×Ω)

∑
i∈N

∫
ci(µ

Ω
i )

ιi(µΠ
i )

dτi(µi) subject to

∫
µ1 dτ1(µ1) =

∫
µ2 dτ2(µ2) = µ. (3)

We next present different examples that vary in how agents’ effort costs depend on the

fundamental state. We denote by τΠ
i ∈ ∆∆Π and τΩ

i ∈ ∆∆Ω the distributions of the

marginals of µi along Π and Ω respectively, and let ϕ := (P1 − P0)/(P2 − P1) ∈ (0, 1).

An example with no information. Suppose agents’ effort costs are constant.

Proposition 1. Take c1(1) = c1(2) =: cH ≥ cL := c2(1) = c2(2). Then a feasible (µ, τ1, τ2)

is optimal if and only if τΠ
1

(
µΠ
)

= τΠ
2

(
µΠ
)

= 1 and

µΠ(π1) =


√
cH − ϕ

√
cL

(1− ϕ)(
√
cH +

√
cL)

: ϕ
√
cH <

√
cL

1 : otherwise.

In particular, in every optimum, neither agent learns anything about the ranking state; and

some optimum exists in which neither agent learns anything about the fundamental state.

8



This result corresponds to a special case of the results in Halac, Lipnowski and Rappoport

(2021a). When ci is constant for each i ∈ N , the interim value functions v∗i are all concave,

so v̂∗i = v∗i and providing no information to the agents about the realized ranking state is

strictly optimal. Because the fundamental state is irrelevant, the principal is indifferent to

providing information about it, as long as agents learn nothing about the ranking state. Our

two-step procedure therefore reduces to a single optimization over µ ∈M(p0) in this setting.

The solution in Proposition 1 shows that the higher is agent 1’s effort cost relative to agent

2’s, the higher is the probability µ places on ranking state π1 that ranks agent 1 second.

An example with public information. Suppose agents are ex-ante identical but their

effort costs are perfectly negatively correlated: one has a high cost and the other a low cost,

depending on the fundamental state.

Proposition 2. Take c1(1) = c2(2) =: cH > cL := c2(1) = c1(2). Then there is a unique

optimal (µ, τ1, τ2). Each i ∈ N has τi(β
∗
1 ⊗ δ1) = τi(β

∗
2 ⊗ δ2) = 1/2, where

β∗1(π1) = β∗2(π2) =


√
cH − ϕ

√
cL

(1− ϕ)(
√
cH +

√
cL)

: ϕ
√
cH <

√
cL

1 : otherwise.

In particular, in the unique optimum, agents learn the fundamental state and hold identical

beliefs about the total state.

The proposition shows that providing public information is strictly optimal in this set-

ting. In the unique optimum, each agent learns the fundamental state, and in turn learns

something about the ranking state. Moreover, because each agent holds a unique belief in

each fundamental state, it follows that agents perfectly learn each other’s beliefs—that is,

information must be public. The intuition is that the principal benefits from correlating

agents’ ranking state beliefs with their relative effort costs and thus, here, with the fun-

damental state. In fact, observe that ranking state beliefs are the same function of effort
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costs as in Proposition 1: because the fundamental state is publicly revealed, it is as if the

principal optimizes the contracts separately over two deterministic environments.

An example with private information. Suppose the effort cost of only agent 1 varies

with the fundamental state, and for simplicity let agent 2’s constant effort cost be equal to

agent 1’s in one of the fundamental states.

Proposition 3. Take c1(1) =: cH > cL := c2(1) = c2(2) = c1(2). Then a feasible (µ, τ1, τ2)

is optimal if and only if τ1(β∗∗ω ⊗ δω) = 1/2 for each ω ∈ Ω and τΠ
2

(∫
β∗∗ω dp0(ω)

)
= 1, where

(
β∗∗1 (π1), β∗∗2 (π1)

)
=


(

(2 + ϕ)
√
cH − 3ϕ

√
cL

(1− ϕ)(3
√
cL +

√
cH)

,
(2− ϕ)

√
cL − ϕ

√
cH

(1− ϕ)(3
√
cL +

√
cH)

)
:

√
cH√
cL
≤ 3

1 + 2ϕ

(1, 1/3) : otherwise.

In particular, in every optimum, agent 1 has strictly more information than agent 2 about

both the ranking state and the fundamental state.

The proposition shows that providing private information is strictly optimal in this set-

ting. Agent 1 (whose effort cost varies with the fundamental state) learns the fundamental

state and in turn something about the realized ranking state. In contrast, agent 2 (whose

effort cost is constant) is given no information about the ranking state, and therefore is given

strictly less information about the fundamental state than agent 1.

More examples. In the examples above, the principal optimally gives an agent either no

information or full information about the fundamental state. We can show however that this

is not a general property. For example, consider perfectly-positively-correlated agent effort

costs: c1(1) = c2(1) > c2(2) = c1(2). Because the principal would want to correlate each

agent’s ranking state belief with the fundamental state in the same direction, it turns out

that giving an agent partial information about the fundamental state is strictly optimal.

A natural extension of our team-effort problem is to let the probability of project success

depend on the fundamental state. For ω ∈ Ω, suppose the project succeeds with probability
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Pk(ω) if exactly k agents work. By similar logic as in Proposition 1, we can show that if P2

and (ci)i∈N are constant, then it is optimal to give agents no information about the realized

total state. More generally, providing public or private information may be optimal when

both project success and effort costs depend on the fundamental state, and our methodology

can be used to solve for the optimal joint design of incentives and information.
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Online Appendix for

“Addressing Strategic Uncertainty

with Incentives and Information”

by Marina Halac, Elliot Lipnowski, Daniel Rappoport

A. Proofs for Section 2

Proof of Lemma 1. Let us first recall our rationalizability notion. Given an incentive

scheme σ = 〈q, χ〉 we define the sets {T σi (κ)}i∈N,κ∈Z+ as follows. Let T σi (0) := ∅, and

then, recursively for κ ∈ N, let T σi (κ) be the set of all ti ∈ T qi such that every η ∈

∆
(
2N\{i} × T q−i × Ω

)
with margT q−i×Ω η = qi(·|ti) and {j ∈ N \ {i} : tj ∈ T σi (κ− 1)} ⊆ J, ∀(J, t−i, ω) ∈

supp(η) has

∑
J⊆N\{i}, t−i∈T q−i, ω∈Ω

η(J, t−i, ω) [ui (J ∪ {i}, χi(ti), ω)− ui (J, χi(ti), ω)] > 0.

By definition of interim correlated rationalizability (Dekel et al., 2007), incentive scheme σ

is UIF if and only if
⋃∞
κ=0 T

σ
i (κ) = T qi for every i ∈ N .

Now, in what follows, say a type profile t has no ties if tRi 6= tRj for all distinct i, j ∈ N .

To prove the first assertion, suppose σ = 〈q, χ〉 is a strict ranking scheme. Let us prove

by induction on κ ∈ Z+ that, if i ∈ N and ti ∈ T qi have tRi = κ, then ti ∈ T σi (κ)—from which

it will follow directly that σ is UIF. The claim holds vacuously for κ = 0, so take κ ∈ N and

i ∈ N , and assume the claim holds for all i′ ∈ N and all κ′ ∈ {0, . . . , κ − 1}. Next observe

that χi(ti) ∈ X ∗i (µqi (κ)) because σ is a strict ranking scheme; and the inductive hypothesis

implies t−i ∈ T σ−i(κ− 1) for every t−i ∈ T q−i such that (ti, t−i) has no ties and πj(t) < πi(t).

Hence, by definition, ti ∈ T σi (κ) as desired.

To prove the second assertion, suppose σ = 〈q, χ〉 is an arbitrary UIF incentive scheme.

1



For each i ∈ N , define the map kσi : T qi → N by letting kσi (ti) := min{κ ∈ N : ti ∈ T σi (κ)}.

It is easy to see some one-to-one function λ̃ :
⋃
i∈N [{i} × T qi ]→ N exists such that, for any

i, j ∈ N and ti ∈ T qi , tj ∈ T σj with kσi (ti) > kσj (tj), we have λ̃i(ti) > λ̃j(tj). Then, define

λ :
⋃
i∈N [{i} × T qi ]→ N2 by letting λi(ti) := (λ̃i(ti), 1).

Now, define the incentive scheme σ∗ := 〈q∗, χ∗〉 by letting

q∗(t∗, ω) := q
((
λ−1
i (t∗i )

)
i∈N , ω

)

for every t∗ ∈ (N2)N and ω ∈ Ω, and letting χ∗i (t
∗
i ) := χi

(
λ−1
i (t∗i )

)
for every i ∈ N and

t∗i ∈ T
q∗

i . That the modified scheme is UIF follows from the original scheme being UIF (Dekel

et al., 2007, by Proposition 1) given that type ti’s hierarchy of beliefs over X × Ω under σ

are the same as type λi(ti)’s under σ∗. Further, because σ∗ generates the same distribution

over X × Ω as σ does, it follows directly that V (σ∗) = V (σ). All that remains is to see

σ∗ is a strict ranking scheme. That q∗ exhibits no ties is immediate from the construction.

Moreover, given any i, j ∈ N , observe any t∗i ∈ T
q∗

i and t∗j ∈ T
q∗

j have kσ
∗
i (t∗i ) > kσ

∗
j (t∗j) if and

only if kσi (λ−1
i (t∗i )) > kσj (λ−1

j (t∗j)), which in turn implies tRi
∗ > tRj

∗. It therefore follows from

t∗i ∈ T σ
∗

i

(
kσ

∗
i (t∗i )

)
that χ∗i (t

∗
i ) ∈ X ∗i (µq

∗

i (t∗i )), and so σ∗ is a strict ranking scheme. Q.E.D.

Proof of Theorem 1. We first show that supσ is UIF V (σ) ≤ supµ∈M(p0)

∑
i∈N v̂

∗
i (µ). Given

Lemma 1, it suffices to show that the principal’s value for a strict ranking scheme 〈q, χ〉 is no

greater than supµ∈M(p0)

∑
i∈N v̂

∗
i (µ). Bayesian updating implies that a given agent i’s belief

is, on average, equal to the true distribution over total states:

∑
t∈T q

q(t)µqi (·|ti) =
∑
ti∈T qi

qi(ti)µ
q
i (·|ti) = µq ∈M(p0).

Hence, the belief distribution τi ∈ ∆∆(Π×Ω) given by
∑

ti∈T qi
qi(ti)δµqi (·|ti) is feasible in the

2



program defining v̂∗i (µ
q). It follows that

∑
t∈T q , ω∈Ω

q(t, ω)v∗i (µ
q
i (·|ti)) ≤ v̂∗i (µq) ,

and so summing over i ∈ N yields V (q) ≤
∑

i∈N v̂
∗
i (µ

q).

To show supσ is UIF V (σ) ≥ supµ∈M(p0)

∑
i∈N v̂

∗
i (µ), consider an arbitrary µ ∈ M(p0)

and ε > 0. We will construct a strict ranking scheme σ = 〈q, χ〉 such that V (σ) ≥∑
i∈N [v̂∗i (µ)− 3ε]. To do so, observe v̂∗i is bounded above by some constant Li ∈ R for

each i ∈ N because v∗i is. In what follows, let m ∈ N be large enough that m ≥ |N | and

2|N |
m

[Li − v∗i (xi, ω)] ≤ ε for each i ∈ N and ω ∈ Ω.

Consider any i ∈ N . Some τi ∈ ∆∆(Π × Ω) exists such that
∫
µi dτi(µi) = µ and∫

v∗i dτi ≥ v̂∗i (µ)− ε. For each µi ∈ supp(τi), the definition of v∗i implies some xµii ∈ X ∗i (µi)

exists such that
∑

π∈Π,ω∈Ω µi(π, ω) vi(x
µi
i , ω) ≥ v∗(µi) − ε. By the splitting lemma, some

γi : Π×Ω→ ∆N exists such that, when the prior distribution over Π×Ω is µ and the results

of Blackwell experiment γi are observed, the induced distribution of beliefs over Π × Ω is

τi. Letting si ∈ N denote the number of positive-probability signals in N given prior µ and

experiment γi, we can assume without loss that the positive-probability signals are exactly

{1, . . . , si}. For each si ∈ {1, . . . , si}, let xsii denote xµii , where µi is the belief induced by

signal realization si from this experiment.

Now, we construct our incentive scheme σ = 〈q, χ〉. Define the prior q ∈ ∆[(N2)N × Ω]

by letting, for each t = (tRi , t
S
i )i∈N ∈ (N2)N and ω ∈ Ω,

q(t, ω) :=


1
m
µ(π, ω)

∏
i∈N γi(t

S
i |π, ω) : ∃` ∈ {0, . . . ,m− 1} with tRi = `+ πi for all i ∈ N,

0 : otherwise;

3



and the allocation rule χ = (χi)i∈N via

χi(t
R
i , t

S
i ) :=


x
tSi
i : tSi ≤ si and N ≤ tRi ≤ m,

xi : otherwise.

By construction, this scheme has no ties: tRi 6= tRj for all distinct i, j ∈ N and any supported

type profile t ∈ T q. Moreover, for each i ∈ N , a direct computation shows every type ti ∈ T qi

with |N | ≤ tRi ≤ m has belief µqi (·|ti) = µ
tSi
i and thus has χi(ti) = x

tSi
i ∈ X ∗i (µqi (·|ti)). Because

every other ti ∈ T qi has χi(ti) = xi ∈
⋂
µi∈∆(Π×Ω)X ∗i (µi), it follows that σ is a strict ranking

scheme. Finally, let us bound (from below) the value of this scheme to the principal. To

do so, consider any agent i ∈ N and si ∈ {1, . . . , si}, and observe that σ generates belief

µsii ∈ ∆(Π× Ω) for agent i with probability

margiq
{
ti = (tRi , t

S
i ) ∈ T qi : µqi (·|ti) = µ

tSi
i

}
≥

∑
π∈Π, ω∈Ω

m−1∑
`=0

1
m

1|N |≤`+πi≤mµ(π, ω)γi(si|π, ω)

≥
(

1− 2|N |
m

) ∑
π∈Π, ω∈Ω

µ(π, ω)γi(si|π, ω)

≥
(

1− 2|N |
m

)
τi(µ

si
i ).

Hence, the principal’s payoff from this strict ranking scheme is

V (σ) ≥
∑
i∈N

{
2|N |
m

[
min
ω∈Ω

v∗i (xi)

]
+
(

1− 2|N |
m

) si∑
si=1

τi(µ
si
i )
∑
ω∈Ω

margΩµ
si
i (ω) vi(x

si
i , ω)

}

≥
∑
i∈N

{
2|N |
m
Li − ε+

(
1− 2|N |

m

) si−1∑
si=0

τi(µ
si
i ) [v∗i (µ

si
i )− ε]

}
≥

∑
i∈N

{
2|N |
m
v̂∗i (µ)− ε+

(
1− 2|N |

m

)
[v̂∗i (µ)− 2ε]

}
≥

∑
i∈N

[v̂∗i (µ)− 3ε] ,

as required. Q.E.D.
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Proof of Fact 1. Let P denote the set of Borel probability measures on ∆(Π×Ω), a com-

pact space when endowed with its weak* topology.

Take any i ∈ N . Because an upper semicontinuous function over a compact space

attains a maximum, for any µ ∈ ∆(Π×Ω), the program supτi∈P:
∫
µi dτi(µi)=µ

∫
v∗i dτi—which

relaxes the program defining v̂∗i (µ) by allowing distributions with infinite support—admits an

optimum. Moreover, by the upper semicontinuous version of Berge’s theorem, this optimal

value is an upper semicontinuous function of µ. Now, Carathéodory’s theorem tells us some

optimum to the aforementioned program has affinely independent (hence, of cardinality no

more than N !∗ |Ω|) support. It follows that the program defining v̂∗i (µ) admits an optimum,

and that v̂∗i is upper semicontinuous.

Finally, because
∑

i∈N v̂
∗
i is upper semicontinuous and M(p0) is compact, the program

supµ∈M(p0)

∑
i∈N v̂

∗
i (µ) admits an optimum. Q.E.D.

B. Proofs for Section 3

Toward proving the results of Section 3, some preliminary claims will be useful.

Claim 1. Suppose i ∈ N and µ ∈ ∆(Π× Ω). If τi is an optimal solution to

min
τi∈∆∆(Π×Ω)

∫
ci(µ

Ω
i )

ιi(µΠ
i )

dτi(µi) subject to

∫
µi dτi(µi) = µ,

then no ω̃, ω̂ ∈ Ω with ci(ω̃) = ci(ω̂) and distinct β̃, β̂ ∈ ∆Π have both β̃ ⊗ δω̃ and β̂ ⊗ δω̂ in

the support of τi.

Proof. Suppose ω̃, ω̂ ∈ Ω with ci(ω̃) = ci(ω̂) =: ci and distinct β̃, β̂ ∈ ∆Π have both β̃ ⊗ δω̃

and β̂ ⊗ δω̂ in the support of τi. Then, some ε ∈ (0, 1] and τ̌i ∈ ∆∆(Π×Ω) exists such that

τi = (1− ε)τ̌i + ε
2
δβ̃⊗δω̃ + ε

2
δβ̂⊗δω̂ .

5



The alternative belief distribution

τ ′i = (1− ε)τ̌i + εδ1
2(β̃⊗δω̃+β̂⊗δω̂)

is then feasible in the given program. Moreover, by strict convexity of ci
ιi(β)

in β ∈ ∆Π, the

latter attains a strictly lower loss, so that τi is not optimal. Q.E.D.

Claim 2. Suppose i ∈ N and β0 ∈ ∆Π. If τi is an optimal solution to the program

min
τi∈∆∆(Π×Ω)

∫
ci(µ

Ω
i )

ιi(µΠ
i )

dτi(µi) subject to

∫
(µΠ

i , µ
Ω
i ) dτi(µi) = (β0, p0), (4)

then some alternative optimal τ̃i exists such that

• Each ω ∈ Ω admits a unique β̃ω ∈ ∆Π such that τ̃i(β̃ω ⊗ δω) = p0(ω);

• Any µi in the support of τi and any ω, ω̂ ∈ Ω in the support of µΩ
i have β̃ω = β̃ω̂.

Proof. Let τ̃i :=
∫ ∫

δµΠ
i ⊗δω dµΩ

i (ω) dτi(µi) ∈ ∆∆(Π× Ω).

Various features are immediate from the construction. First, the average marginal distri-

butions under τ̃i are the same as those under τi, making τ̃i feasible in the program. Second,

because the fraction
ci(µ

Ω
i )

ιi(µΠ
i )

is affine in µΩ
i when holding µΠ

i fixed, we know τ̃i yields the same

value in program (4) as τi does, and so is optimal too. Third, every µ̃i in the support of τ̃i

admits some β̃ ∈ ∆Π and ω ∈ Ω for which µ̃i = β̃ ⊗ δω. Fourth, for any µi in the support of

τi and any ω, ω̂ ∈ Ω in the support of µΩ
i , some β̃ ∈ ∆Π has both β̃ ⊗ δω and β̃ ⊗ δω̂ in the

support of τ̃i—indeed, β̃ = µΠ
i has this property.

The claim will then follow if we know that no ω ∈ Ω and distinct β̃, β̂ ∈ ∆Π have

both β̃ ⊗ δω and β̂ ⊗ δω in the support of τ̃i. And indeed, this fact follows directly from

Claim 1. Q.E.D.

Claim 3. For any cH ≥ cL > 0, the program

min
(βH ,βL)∈[0,1]2

{
cH

(1−βH)(P1−P0)+βH(P2−P1)
+ cL

(1−βL)(P1−P0)+βL(P2−P1)

}
subject to βH + βL = 1

6



has a unique optimal solution (βH , βL). It has

βH =


√
cH−ϕ

√
cL

(1−ϕ)(
√
cH+

√
cL)

: ϕ
√
cH <

√
cL

1 : otherwise.

Moreover, if cH > cL, then βH > 1
2
.

Proof. Substituting in βL = 1 − βH , we can view the program as an optimization over

βH ∈ [0, 1]. The loss is continuous in βH so that an optimum exists, and it is strictly convex

in βH so that this optimum is unique. Direct computation shows that the given form of βH

satisfies the first-order condition, and hence is the optimum.

Finally, supposing cH > cL, let us show βH > 1
2
. Indeed, in this case,

2(
√
cH − ϕ

√
cL)− (1− ϕ)(

√
cH +

√
cL) = (1 + ϕ)(

√
cH −

√
cL) > 0,

so that βH ≥ min
{

1,
√
cH−ϕ

√
cL

(1−ϕ)(
√
cH+

√
cL)

}
> 1

2
. Q.E.D.

B.1. Toward Proposition 1

Proof of Proposition 1. Some optimal solution to program (3) exists by Fact 1. Moreover,

by Claim 1, any optimal solution (µ, τ1, τ2) has τΠ
1

(
µΠ
)

= τΠ
2

(
µΠ
)

= 1.

Hence, all that remains to see is that the program

min
β∈∆Π

∑
i∈N

ci
ιi(β)

is uniquely solved by setting

β(π1) =


√
cH−ϕ

√
cL

(1−ϕ)(
√
cH+

√
cL)

: ϕ
√
cH <

√
cL

1 : otherwise,

7



which follows directly from Claim 3 (with β(π1) corresponding to βH in that claim). Q.E.D.

B.2. Toward Proposition 2

Claim 4. Suppose c1(1) = c2(2) > c2(1) = c1(2). Let i ∈ N , let β0 ∈ ∆Π be uniform, and

suppose τi is a feasible solution to the program (4) from Claim 2’s statement. Then, some

feasible solution to program (3) exists that generates loss 2
∫ ci(µ

Ω
i )

ιi(µΠ
i )

dτi(µi).

Proof. Let ψ : Π × Ω → Π × Ω be the involution that changes every coordinate.8 Define

Ψ : ∆(Π × Ω) → ∆(Π × Ω) by letting Ψ(µ̃) := µ̃ ◦ ψ−1 for every µ̃ ∈ ∆(Π × Ω). Let j be

such that N = {i, j}, and define τj := τi ◦Ψ−1. It follows from v∗1 = v∗2 ◦Ψ that

∑
k∈N

∫
ck(µΩ

k )

ιk(µΠ
j )

dτk(µk) = 2

∫
ci(µ

Ω
i )

ιi(µΠ
i )

dτi(µi).

If some µ ∈ ∆(Π × Ω) is such that (µ, τ1, τ2) is feasible in program (3), we will have a

feasible triple with the desired property. To that end, define µ :=
∫
µi dτi(µi), and note

that
∫
µj dτj(µj) = Ψ(µ) by construction. It then suffices to observe that µ = Ψ(µ).

But this property follows from both marginals µΠ, µΩ being uniform on their respective

domains.9 Q.E.D.

Claim 5. Suppose c1(1) = c2(2) =: cH > cL := c2(1) = c1(2). Let i ∈ N , let β0 ∈ ∆Π be

uniform, and suppose τi is an optimal solution to the program (4) from Claim 2’s statement.

If τi{µi ∈ ∆(Π× Ω) : µΩ
i (ω) = 1 for some ω ∈ Ω} = 1, then τi(β

∗
1 ⊗ δ1) = τi(β

∗
2 ⊗ δ2) = 1

2
,

where

β∗1(π1) = β∗2(π2) =


√
cH−ϕ

√
cL

(1−ϕ)(
√
cH+

√
cL)

: ϕ
√
cH <

√
cL

1 : otherwise

> 1
2
.

8 So, if N = {i, j} = {i′, j′}, then ψ(πi, i′) = (πj , j′).
9 Consider the 2× 2 matrix whose (i′, j′) entry is µ(πi

′
, j′)− 1

4 for each i′, j′ ∈ N . Every row and every

column of this matrix sums to zero, and so it is proportional to ±
(

1 −1
−1 1

)
.
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Proof. Assume τi has the hypothesized properties. First, observe no ω ∈ Ω and distinct

β̃, β̂ ∈ ∆Π have both β̃ ⊗ δω and β̂ ⊗ δω in the support of τi, by Claim 1. Hence, some

β1, β2 ∈ ∆Π exist such that τi{β1 ⊗ δ1, β2 ⊗ δ2} = 1. Optimality of τi for program (4) then

tells us (βi(π
i), βi(π

j)) is an optimal solution to

min
(βH ,βL)∈[0,1]2

{
cH

(1−βH)(P1−P0)+βH(P2−P1)
+ cL

(1−βL)(P1−P0)+βL(P2−P1)

}
subject to βH + βL = 1.

The claim then follows directly from Claim 3. Q.E.D.

Now, we prove Proposition 2.

Proof of Proposition 2. Let (µ, τ1, τ2) be any optimal solution to (3) (which exists by

Fact 1).

Our first step is to construct an alternative optimum that satisfies a symmetry property.

To construct such an optimum, recall the map Ψ : ∆(Π × Ω) → ∆(Π × Ω) defined in the

proof of Claim 4. Symmetry of p0 implies Ψ(µ) ∈ M(p0) because µ ∈ M(p0); because

M(p0) is convex, it therefore also contains µ̂ := 1
2

[µ+ Ψ(µ)]. For each {i, j} = N , define

τ̂i := 1
2

[τi + τj ◦Ψ−1].

Some properties of (µ̂, τ̂1, τ̂2) are immediate from the construction. First, the mean of

τ̂i is µ̂ for each i ∈ N , so that (µ̂, τ̂1, τ̂2) is feasible in program (3). Second, τ̂1 = τ̂2 ◦ Ψ−1.

Third, that v∗1 = v∗2 ◦Ψ implies (µ̂, τ̂1, τ̂2) attains the same value as (µ, τ1, τ2) does in program

(3), and so is optimal too.

Now, let β! ∈ ∆Π be the uniform distribution and i ∈ N . Let us show, for β0 = β!

and i ∈ N , that τ̂i solves the program (4) defined in Claim 2’s statement. Assume oth-

erwise for a contradiction. So some τ̌i ∈ ∆∆(Π × Ω) has
∫

(µΠ
i , µ

Ω
i ) dτ̌i(µi) = (β!, p0) and∫ ci(µ

Ω
i )

ιi(µΠ
i )

dτ̌i(µi) <
∫ ci(µ

Ω
i )

ιi(µΠ
i )

dτ̂i(µi). By Claim 4, some feasible solution to program (3) gener-

ates loss 2
∫ ci(µ

Ω
i )

ιi(µΠ
i )

dτ̌i(µi), contradicting the (previously established) optimality of (µ̂, τ̂1, τ̂2)

in program (3).

9



Having established τ̂i is optimal in program (4), for β0 = β! and i ∈ N , let τ̃i be as

delivered by Claim 2. So τ̃i is optimal in program (4), and

• Each ω ∈ Ω admits a unique β̃iω ∈ ∆Π such that τ̃i(β̃
i
ω ⊗ δω) = p0(ω);

• Any µi in the support of τ̂i and any ω, ω̂ ∈ Ω in the support of µΩ
i have β̃iω = β̃iω̂.

We can then apply Claim 5 to τ̃i, to learn τ̃i is the uniform distribution over {β∗1⊗δ1, β
∗
2⊗δ2}.

That β∗1 6= β∗2 (which holds because β∗1(π1) = β∗2(π2) > 1
2
) then implies (by the second bullet

above) no µi in the support of τ̂i has µΩ
i putting positive probability on both values for the

fundamental state.

Given the previous observation, for each i ∈ N , we can now apply Claim 5 to τ̂i, to learn

τ̂i is the uniform distribution over {β∗1 ⊗ δ1, β
∗
2 ⊗ δ2} too. But then, by construction of τ̂i, it

would follow that τi ∈ ∆{β∗1 ⊗ δ1, β
∗
2 ⊗ δ2} too. Finally, because

∫
µΩ
i dτi(µi) = p0, the only

possibility for τi is that it is uniform as well. Because the pair (τ1, τ2) determines the total

state distribution, the proposition follows. Q.E.D.

B.3. Toward Proposition 3

Claim 6. Suppose c2 is constant. If (µ, τ1, τ2) is optimal in program (3), then some alter-

native optimal (µ̃, τ̃1, τ̃2) exists such that

• The distribution τ̃2 is degenerate;

• Each ω ∈ Ω admits a unique β̃ω ∈ ∆Π such that τ̃1(β̃ω ⊗ δω) = p0(ω);

• Any µ1 in the support of τ1 and any ω, ω̂ ∈ Ω in the support of µΩ
1 have β̃ω = β̃ω̂.

Proof. Let τ̃1 be as delivered by Claim 2 for i = 1 and β0 := µΠ. Then, let τ̃1 :=
∫
µ1 dτ̃1(µ1)

and τ̃2 := δµ̃. By construction, (µ̃, τ̃1, τ̃2) is feasible in program (3), so all that remains is to

see (µ̃, τ̃1, τ̃2) attains a weakly lower loss than (µ, τ1, τ2) does.

Let us observe
∫ ci(µ

Ω
i )

ιi(µΠ
i )

dτ̃i(µi) ≤
∫ ci(µ

Ω
i )

ιi(µΠ
i )

dτi(µi) for each agent i ∈ N . For i = 1, the

inequality follows from optimality of τ̃1 in program (4) from Claim 2’s statement. For i = 2,

10



the inequality follows from τ̃Π being degenerate, the identity µ̃Π = µΠ, and the integrand

c2(µΩ
2 )

ι2(µΠ
2 )

= c2
ι2(µΠ

2 )
being a convex function of the marginal µΠ

2 . Q.E.D.

Claim 7. Suppose c2 is constant and a unique ~β ∈ (∆Π)Ω minimizes

∫
c1(ω)
ι1(βω)

dp0(ω) + c2
ι2(

∫
βω dp0(ω))

,

and βω 6= βω̂ for all distinct ω, ω̂ ∈ Ω, then every optimal solution (µ, τ1, τ2) to program (3)

has

• τ1(βω ⊗ δω) = p0(ω) for every ω ∈ Ω;

• τΠ
2

(∫
βω dp0(ω)

)
= 1;

• τΠ
1 is a strict mean-preserving spread of τΠ

2 , and τΩ
1 is a strict mean-preserving spread

of τΩ
2 .

Proof. The third point follows immediately from the first two given that the entries of ~β are

distinct: the first point implies τΩ
1 is maximally informative and τΠ

1 is strictly informative,

while the second point implies τΠ
2 is uninformative and τΩ

2 is not maximally informative.

Moreover, the second point follows directly from the first because the entries of ~β are all

distinct, given Claim 1. So we turn to showing every optimal (µ, τ1, τ2) for program (3)

satisfies the first point.

Consider first any optimal (µ̂, τ̂1, τ̂2) for program (3) with the property that τ̂1 reveals

the fundamental state—that is, such that every belief in the support of τ̂1 takes the form

β̂ ⊗ δω̂ for some β̂ ∈ ∆Π and ω̂ ∈ Ω. By Claim 1, no ω̂ ∈ Ω and distinct β, β̂ ∈ ∆Π can

exist such that β⊗ δω̂ and β̂⊗ δω̂ are both in the support of τ̂1. Said differently, every ω̂ ∈ Ω

admits a unique µ̂1 in the support of τ̂1 with µ̂Ω
1 (ω̂) > 0. The uniqueness property of ~β then

directly implies that τ̂1(βω̂ ⊗ δω̂) = p0(ω̂) for every ω̂ ∈ Ω.

In light of the above paragraph, it suffices to show, for any optimal (µ, τ1, τ2) for program

(3), that τ1 reveals the fundamental state. To that end, apply Claim 6: some optimal solution

11



(µ̃1, τ̃1, τ̃2) to program (3) exists such that:

• The distribution τ̃Π
2 is degenerate;

• Each ω ∈ Ω admits a unique β̃ω ∈ ∆Π such that τ̃1(β̃ω ⊗ δω) = p0(ω);

• Any µ1 in the support of τ1 and any ω, ω̂ ∈ Ω in the support of µΩ
1 have β̃ω = β̃ω̂.

Now, the uniqueness property of ~β, together with optimality of (µ̃, τ̃1, τ̃2), implies (β̃ω)ω∈Ω =

~β. Hence, because the entries of ~β are distinct, it follows that every µ1 in the support of τ1

admits some ω ∈ Ω such that µΩ
1 (ω) = 1. Said differently, τ1 reveals the fundamental state,

as required. Q.E.D.

Claim 8. Take c1(1) =: cH > cL := c2(1) = c2(2) = c1(2). The program

min
~β∈(∆Π)Ω

∫
c1(ω)
ι1(βω)

dp0(ω) + c2
ι2(

∫
βω dp0(ω))

has a unique optimal solution (β∗∗1 , β
∗∗
2 ). It has

(
β∗∗1 (π1), β∗∗2 (π1)

)
=


(

(2+ϕ)
√
cH−3ϕ

√
cL

(1−ϕ)(3
√
cL+
√
cH)
,

(2−ϕ)
√
cL−ϕ

√
cH

(1−ϕ)(3
√
cL+
√
cH)

)
:
√
cH√
cL
≤ 3

1+2ϕ

(1, 1/3) : otherwise.

In particular, β∗∗1 6= β∗∗2 .

Proof. Substituting in βω(π2) = 1 − βω(π1) for each ω ∈ Ω, we can view the program as

an optimization over (β1(π1), β2(π1)) ∈ [0, 1]2. The loss is continuous so that an optimum

exists, and it is strictly convex so that this optimum is unique. Direct computation shows

that the given form of (β∗∗1 (π1), β∗∗2 (π1)) satisfies the first-order condition, and hence is the

optimum.

Finally, let us verify that β∗∗1 6= β∗∗2 . Given the form of the solution, we need only check

that the numerators differ in the case that
√
cH√
cL
≤ 3

1+2ϕ
. And indeed,

[(2 + ϕ)
√
cH − 3ϕ

√
cL ]− [(2− ϕ)

√
cL − ϕ

√
cH ] = 2(1 + ϕ) (

√
cH −

√
cL) > 0.

12



Q.E.D.

Now, we prove Proposition 3.

Proof of Proposition 3. Some optimal solution to program (3) exists by Fact 1. Moreover,

any two triples that satisfy the conditions of the proposition’s statement—which yield the

same total state distribution, provide the same information to agent 1 about the total state,

and provide the same information to agent 2 about the ranking state—generate the exact

same loss (and so are either both optimal or both suboptimal). Hence, given Claim 7, we

need only see that (β∗∗ω )ω∈Ω is the unique solution to the program

min
~β∈(∆Π)Ω

∫
c1(ω)
ι1(βω)

dp0(ω) + c2
ι2(

∫
βω dp0(ω))

,

and that β∗∗1 6= β∗∗2 —exactly what Claim 8 proves. Q.E.D.
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