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Abstract

A decision maker (DM), who will take a binary decision, cares about his reputation

for being “good”, i.e., wanting to accord his action choice with public evidence, as op-

posed to being “bad”, i.e., having a fixed partisan agenda regardless of the evidence.

While the decision is taken after evidence is realized, the DM has the option to take a

“stand” beforehand, i.e., to communicate his intentions via a cheap-talk message. A

wide range of equilibria exist and are characterized by how much the good DM reveals

about his standards at this initial communication stage. The most informative of these

is ex-ante signaling, which sees the DM effectively commit to a contingent plan as a

function of the realized evidence. Our main theorem states that ex-ante signaling mini-

mizes the probability that the DM follows his partisan agenda across all equilibria. We

also consider how the design of the investigation—the distribution of evidence—affects

outcomes in the presence of communication prior to its realization. The investigation

mitigates the DM’s partisan behavior more when the distribution of evidence is “un-

predictable,” as this hinders the DM in targeting his announced contingent plan.

1. Introduction

Across a wide array of institutions, individuals’ decisions are scrutinized for whether
they align with public objectives. This often comes down to whether the decision accords
with some public evidence as opposed to the potentially biased agenda of the decision
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maker. While, the decision is only made after the evidence is made public, in many con-
texts, it takes time for the evidence to be realized. This gives the opportunity for the de-
cision maker to “take a stand”, or state their intentions, before the uncertainty is resolved.
Our paper explores how such “ex-ante” signaling efforts affect the choices of these reputa-
tionally concerned agents. To make this concrete, consider the following examples.

1. Political scandals often initiate investigations which are then followed by a decision
to censure, impeach, or expel the involved politician. Moderate representatives care
about their reputation for integrity, i.e., wanting to decide based on the objective evi-
dence instead of partisan objectives. Before the investigation concludes, these repre-
sentatives can make informative statements about how they will decide or defer and
only signal with their eventual decision. An example is the impeachment inquiry ini-
tiated by Speaker of the House Pelosi in September 2019 concerning a call between
President Trump of the United States and President Zelensky of Ukraine.1 Despite
the inquiry being ongoing, various pivotal senators were interviewed and asked to
weigh in about their intended impeachment votes.2

2. Many government organizations such as the Federal Trade Commission (FTC) or
Food and Drug Administration (FDA) are tasked with approval decisions. The of-
ficials involved may have their idiosyncratic preferences about each issue, but also
have a desire to project integrity rather than appearing to seek a particular outcome
regardless of the specifics. These organizations can declare their standards for ap-
proval up front or decide on a case-by-case basis after observing the evidence. For
example, in 2020, national drug regulatory agencies were eager to approve a safe
COVID-19 vaccine but faced credibility worries that they were rushing the process.
The FDA laid out a specific efficacy threshold in clinical trials for approval, whereas
the European Union’s counterpart deliberately provided no such lower bound (Singh
and Upshur (2021)). Similar issues arise in the decisions of other government agen-
cies, such as the FTC deciding whether to approve a merger.

1 A clear example of these politicians’ concern for appearing non-partisan is that the senate voted unani-
mously to release the transcript of the call and whistleblower complaint despite President Trump and many
Republican party operatives urging against it. (See Mcardle, Mairead (2019) “Senate GOP Unanimously Ap-
proves Dem Resolution Calling for Release of Whistleblower Complaint” National Review, September 24).
More broadly, politicians are frequently rewarded for appearing non-partisan, e.g., John Hickenlooper ben-
efited from taking bipartisan positions in the 2020 presidential election (see Bernstein, Jonathan (2013) “Un-
derstanding the importance of a reputation for bipartisainship,” Washington Post, July 24.)

2 Some made informative statements: Senator Romney reported that the transcript was “troubling.” Oth-
ers refused to comment: Senator Sasse criticized his colleagues for jumping to conclusions, and pledged to
wait and see until the investigation was concluded. See Costa, Roberts (2019) ”Cracks emerge among Senate
Republicans over Trump urging Ukrainian leader to investigate Biden” Washington Post, September 25.
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3. University admissions committees would like to appear as though their decisions
are based on academic potential despite being pressured to consider the legacy sta-
tuses, donations, or other non-academic features of their applicants. Many American
universities practice “holistic” admissions and will not give exact criteria for admis-
sion. The lack of transparency in holistic admissions has been criticized for facilitat-
ing higher admission rates for unqualified applicants.3 One alternative is to publicize
specific criteria for admission, a practice common in universities throughout Europe
and Asia.4,5

We study three important questions in such settings. First, how informative can commu-
nication be prior to the revelation of evidence, e.g., how much can politicians distinguish
their standards during an investigation? Second, how does informative communication
about hypothetical plans affect outcomes, e.g., would we expect that Republican senators
who indicate conditions for impeachment up front convict more or less than those who
wait and see, and would universities admit more donor applicants were they to publicize
admissions standards rather than use holistic admissions? Third, how does the type of
uncertainty about the evidence affect outcomes in the presence of communication? This
is important in settings where the investigation is the choice of some “investigator,” e.g.,
how should Speaker Pelosi conduct the impeachment inquiry to get the most Republican
senators to convict, and how should firms provide evidence about potential mergers to the
FTC to ensure the highest chance of approval?

Our model features a single decision maker (DM), and an inactive Bayesian observer.
The game consists of two stages: a communication stage and a decision stage. At the
communication stage, the DM, sends a cheap-talk message about his preferences.6 At the
decision stage, the evidence e ∈ R is realized and the DM chooses a binary action a ∈ {0, 1}.
In addition to the evidence, the DM’s preferences over the action also depend on his private
type: he can either be a bad type — a “partisan”— or a good type— a “non-partisan.” The

3 Pinker, Steven (2014) “The Trouble With Harvard” The New Repbulic, September 4.
4 Frisancho and Krishna (2016) describes how admission to Delhi University is automatic if an applicant’s

exam score crosses a social group dependent cut-off.
5 Other examples abound. Many academic journals have required or offered preregistration (see Warren,

Matthew (2018) “First analysis of ‘pre-registered’ studies shows sharp rise in null findings,” Nature, October
24. ), i.e., specifying the design of the study and conditions for acceptance before the data is observed or
analyzed. While preregistration is often discussed in terms of its incentive effects on authors, it will also have
effects on which papers are selected by reputationally concerned editors.

6 While cheap-talk communication fits statements made by pivotal representatives during political inves-
tigations, our applications to regulatory agencies are better fit by endowing the DM with the ability to commit
to a contingent plan. As we show in Subsection 6.1, the focal equilibrium of our model with cheap talk also
prevails in the alternative model where the DM is endowed with commitment, and so our main results apply
to both cases.
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non-partisan would like to accord his action with the evidence and his privately known
evidence standards s; more specifically he would like to take a = 1 more if e is higher or s
is lower. On the other hand, the partisan does not care about taking the right decision and
suffers a constant disutility from taking a = 1 regardless of the evidence. Finally, the DM
also cares about his reputation for being a non-partisan in the eyes of the observer who
sees the DM’s cheap-talk message, the realized evidence, and the DM’s chosen action.

The DM’s standards can be interpreted in two ways: (i) as idiosyncratic heterogene-
ity in preferences with respect to this particular decision, e.g., different politicians have
different views about the appropriate extent of executive power while still maintaining in-
tegrity, or (ii) private non-verifiable information about the “right” evidence threshold, e.g.,
FDA officials have specific expertise about the drug being considered. Depending on the
parameters, the non-partisans can prefer a = 1 more or less on average relative to the par-
tisan. Instead, what distinguishes these good types is their “responsiveness to evidence.”
In this sense our reputation incentives capture the desire to avoid the common accusation
of opposition as arguing in “bad faith,” i.e., that they have a fixed agenda and simply find
arguments to suit it—like the partisan in our model. “Good faith” opposition may have
a different set of standards, but is still interested in the objective evidence on a particular
issue—like the non-partisan in our model.

In the first part of our paper, we analyze the model for a fixed exogenous distribution of
evidence or “investigation”. In the second part, we introduce an investigator who specifies
the investigation subject to constraints. In our main specification, the investigator seeks to
maximize the probability of conviction.

We first show that each equilibrium can be pinned down by how much information the
communication stage transmits about the standards of the non-partisan type. Two salient
cases are the extremes: (i) when the communication stage involves babbling, and all signal-
ing is done at the decision stage, and (ii) when the communication stage perfectly commu-
nicates his standards, and there is no additional signaling at the decision stage. We term
these equilibria ex-post and ex-ante signaling respectively. We show that ex-ante signaling
is tantamount to the DM committing to a contingent plan as a function of the evidence re-
vealed, e.g., stating “I will convict if the evidence meets ... standard”. Conversely, ex-post
signaling can be interpreted as the DM saying “I will not speculate on hypotheticals”.

It is not apparent how changing the equilibrium would affect outcomes: if anything, the
effective “commitment power” provided by ex-ante signaling would seem to benefit the
DM and perhaps allow the partisan choose his preferred action more frequently. However,
Theorem 1 shows that ex-ante signaling has the highest probability of a = 1 across all equi-
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libria. In addition, ex-ante signaling delivers a higher probability of a = 1 than ex-post
signaling for every evidence realization. This means that politicians who answer interview-
ers’ questions will tend to break with their party more than those who successfully “dodge
the cameras”; government agencies that specify approval criteria up-front will go against
their appointers’ political interests more than those who decide on a case-by-case basis; and
setting clear admissions criteria will lead to more meritocratic admissions decisions rela-
tive to holistic admissions. The broad intuition is simple: before the realization of evidence,
the DM is willing to make stronger claims in order to attain a higher reputation because
there are many evidence realizations under which these stronger claims do not require a
different action than weaker ones. Conversely, under ex-post signaling, after a “pivotal”
evidence realization occurs, obtaining a high reputation requires taking the high action
with probability one. While this simple reasoning is sufficient to prove the result with bi-
nary standards, the full intuition revolves around the “convexity of reputation” which we
elaborate on in Subsection 4.2.

We then move to the investigator’s design problem. In our main specification we con-
sider the investigator flexibly choosing an information structure about a binary state, e.g.,
guilt or innocence of a politician. We focus on the ex-ante signaling equilibrium and char-
acterize the investigation that maximizes the probability of a = 1. Even in the absence of a
designer, our characterization speaks to how the distribution of evidence affects outcomes
when the DM takes informative stands, i.e., under ex-ante signaling.

One main takeaway is that the optimal investigation admits no mass points unlike that
seen in familiar Bayesian persuasion design problems. This is because the DM responds
to changes in the investigation by altering which standards he claims at the communica-
tion stage. This is important from the investigator’s perspective: we show that, across
all investigations, the investigator’s interests (i.e. maximizing probability of conviction)
and partisan’s interest are exactly misaligned in equilibrium. The implication is that the in-
vestigator wants to imbue as little predictability as possible to avoid “targeting” from the
partisan, i.e., declaring thresholds just above where evidence is likely to be.

The layout of the paper is as follows. Section 2 describes our model. Section 3 de-
scribes basic properties of and categorizes all equilibria. Section 4 states our main results
comparing equilibria. Section 5 characterizes the investigator’s optimal investigation and
describes comparative statics. And lastly, Section 6 discusses equilibrium selection, alter-
native commitment and timing assumptions, and various robustness results.
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1.1. Literature Review

We add to the literature studying the impact of reputation concerns (e.g., Holmström
(1999), Scharfstein and Stein (1990), Prendergast and Stole (1996)), in particular those pa-
pers that include cheap talk (e.g., Sobel (1985), Ottaviani and Sorensen (2006a), Ottaviani
and Sorensen (2006b)). Our DM’s preferences are closest to those in Morris (2001).7 He
studies an informed sender who seeks a reputation for being responsive to the state—
similar to our non-partisan—rather than having a state-independent preference—similar
to our partisan.8 The main difference in our preferences is that we have heterogeneity in
the “good” type’s preferences, i.e., there is a non-degenerate distribution of standards. Im-
portantly, communication has no value in our model when the standards distribution is
degenerate, but can otherwise change equilibrium outcomes in a significant way.

We are also connected to the costly signaling literature initiated by Spence (1973). As
in Bénabou and Tirole (2006), Esteban and Ray (2006), and Frankel and Kartik (2019), the
multidimensional type of the DM—namely preference heterogeneity of the non-partisan
in our model—precludes separating equilibria. Frankel and Kartik (2022) and Ball (2022),
among others bring a design perspective to such settings, studying how to design scoring
systems in the presence of strategic manipulation.9,10

Our model differs from standard costly signaling frameworks by introducing the op-
portunity to communicate intentions prior to the public revelation of a payoff relevant
state.11 Our characterization of equilibria reveals that more informative communication
at this stage makes the decision criteria more transparent.12 In this sense, our main result

7 The preferences in Bussing and Pomirchy (2022) also take this form and, as we do, refer to the “bad”
type as a partisan. Many political economy models (e.g., Maskin and Tirole (2004), Kartik and Van Weelden
(2018), Agranov (2016)) have an alternative definition of a partisan as one with preferences far away from the
median voter. We describe how to incorporate such preferences at the end of Section 2.

8 Other papers study different reputation incentives with related interpretations. The advisors in Durbin
and Iyer (2009) and Acemoglu et al. (2013) seek a reputation for being “incorruptible” (i.e., valuing bribes
relatively less as compared with outcomes). A reputation for competence (e.g., Prendergast (1993), Li (2007))
can induce a preference to match the action with the state.

9 Rappoport (2022) considers designing optimal delegation policies for agents engaged in costly signaling.
10 Ali and Bénabou (2020) considers a costly signaling model where there is a common and, more or less,

public variable that affects signaling incentives, but there is no communication prior to its revelation. Kartik
and Van Weelden (2018) also features communication before the revelation of uncertainty and subsequent
costly signaling, but considers different material and reputation incentives of the DM.

11 The impact of exogenous signals have been studied in costly signaling in Daley and Green (2014) and in
cheap talk by Chen (2012), who also looks at how the timing of cheap talk impacts outcomes.

12 Our comparison between ex-ante signaling, which specifies a complete contingent plan, and ex-post
signaling, which defers the decision until the evidence is realized, echoes themes from the literature on in-
complete contracts (e.g., Grossman and Hart (1986), Hart and Moore (1988)), where complete contracts are
assumed to be prohibitively costly. Our results complement these by highlighting how communication and
high reputation incentives can overcome the inability to commit to fully specified contingent plans.
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that the DM acts against his partisan biases more when decision criteria are endogenously
transparent is related to similar conclusions in Levy (2007) and Prat (2005) about exogenous
changes in transparency.

Our study of optimal investigations ties us to the information design literature started
by Kamenica and Gentzkow (2011). In our model, the (now standard) concavification ap-
proach does not work: the distribution of action thresholds used by the DM is endogenous
and depends on the investigation. This pushes the investigator to design “unpredictable”
investigations, a feature similar to that in Roesler and Szentes (2017).

2. Model

Overview There are three players: an investigator, a decision maker (DM), and a Bayesian
observer. The DM eventually chooses a = 1 or a = 0. His preferences over this decision
depend on his privately known type θ ∈ Θ and the realized evidence e ∈ E ≡ R. The DM
also values his reputation in the eyes of the observer.

The timing is as follows. In the initial communication stage, the evidence is unknown
and the DM only knows its CDF F ; we assume

∫
E
edF (e) is well-defined and finite. The

DM sends a cheap-talk message m ∈M to the observer, where M is some sufficiently large
metrizeable space.13 After the message is sent, the decision stage begins: the evidence e
is publicly revealed and then the DM chooses an action a. The observer sees the DM’s
message and action choice in addition to the realized evidence and forms beliefs, after
which payoffs are realized.

Our paper is split into two main parts. The first part of the paper analyzes the case
where the investigation F is exogenous and arbitrary, i.e., the investigator is inactive. The
second part of the paper considers an investigator who can design F .

Preferences The DM can either be a partisan (P ) or a non-partisan (N ). The prior proba-
bility of N types is q ∈ (0, 1). Non-partisan DMs have heterogeneous and privately known
thresholds for convincing evidence—henceforth standards—s ∈ R. Conditional on being
a non-partisan, the distribution of s has CDF G with S ≡ Supp(G). We assume for expo-
sitional convenience that either F or G is atomless. We will refer to a non-partisan with
standards s as an “s type.” Accordingly, the set of types is Θ = S ∪{P} with prior distribu-
tion ν0 ∈ ∆(Θ).14 The DM also values his reputation in the eyes of the observer of being an

13 We will assume |∆(Θ)| ≤ |M | where, for a metrizable space Y , we let ∆(Y ) denote the set of all Borel
probability measures over Y , endowed with the weak∗ topology.

14 Then q = ν0(S) = 1− ν0(P ) and G(s) = ν0({s′ : s′ ≤ s}|θ ∈ S).
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N type. The utility of type θ ∈ Θ from taking action a, given evidence e, and public belief
ν ∈ ∆(Θ) that he is type N is given by

u(θ, e, a, ν) ≡

−ac+ ρν(S) if θ = P,

a(e− s) + ρν(S) if θ = s.

Partisan DMs always want to choose a = 0 and their disutility c > 0 from a = 1 is in-
dependent of the evidence realization. N types prefer a = 0 more if (i) the evidence is less
convincing (e is lower), or (ii) their standards are higher (s is higher).15 We provide addi-
tional discussion following the model, but our leading interpretation of a non-partisan’s
standards is that they are private non-verifiable information about the “correct” evidence
threshold for action a = 1. This also justifies the absence of s in the P type’s utility for the
same reason that e does not appear: the P type does not care about taking the right deci-
sion. The weight ρ > 0 parameterizes how much the DM values reputation. We refer to the
first component of the payoff that depends on the action as the material payoff and ρν(S)

as the reputation payoff. We assume that reputation incentives are strong in the following
sense.

Assumption 1. ρ > 2max{ c
q
, c
1−q}.

Broadly, this assumption guarantees that the reputation incentives can be strong enough
to convince P to choose a = 1. Note that if ρ < c, then P will never choose a = 1. As-
sumption 1 is stronger and, as we will show, ensures that, given any public history, P will
choose a = 1 with positive probability if some s types do as well.

For our main specification, the investigator maximizes the probability of a = 1, namely
his utility is equal to a. In Subsection 6.3 we extend many of our main takeaways to a
model where the investigator’s preferences over a depend on e.

Strategies and Equilibrium We study perfect Bayesian equilibria with an additional re-
finement formalized below—hereafter, simply equilibria. An equilibrium E consists of a
communication-stage strategy σ : Θ → ∆(M), a decision-stage strategy ζ : M × E × Θ →
{0, 1}, an interim belief after the messaging stage ν1 : M → ∆(Θ), and a final belief after
the decision stage ν2 :M × A× E → ∆(Θ), such that for all θ ∈ Θ, m ∈M and e ∈ E,

15 The utility function over actions of N types is assumed to be a(e − s) for convenience. Our results
still hold (with notational tweaks) if the utility difference between a = 1 and a = 0 is increasing in e and
decreasing in s.
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1. ν1 is obtained from σ using Bayes rule.16

2. ν2 is obtained from ζ using Bayes rule with prior ν1(·|m).17

3. σ(M∗
θ |θ) = 1 where M∗

θ ≡ argmaxm∈M
∫
E

(
maxa∈{0,1} u(θ, e, a, ν2(S|m, e, a))

)
dF (e).

4. ζ(Aθ,m,e|θ,m, e) = 1 where Aθ,m,e ≡ argmaxa u(θ, e, a, ν2(S|m, e, a)).

In addition, we impose a version of the D1 refinement à la Cho and Kreps (1987) and
Ramey (1996). Let Θm ≡ Supp(ν1(·|m)) ⊆ Θ be the support of the interim belief on the DM’s
type following message m but before an action is chosen. We impose the D1 refinement at
the decision stage, after evidence has been realized and message m has been sent, where
the type space is Θm.18 In our framework this refinement simplifies to the following: if,
after sending message m and observing evidence e, the DM takes an off-path action, the
observer believes the DM to be the type(s) in Θm who would benefit the most in terms of
their material payoff from this deviation relative to their equilibrium payoffs.19

We next define some useful notation. Let UE
θ (F ) be the expected utility of type θ given

investigation F and equilibrium E .20 Let vE(e, F ) be the probability of action a = 1 given ev-
idence realization e, investigation F , and equilibrium E , and let V E(F ) ≡

∫
E
vE(e, F )dF (e)

be the associated ex-ante probability of a = 1 (i.e., the investigator’s expected utility).

The equilibrium outcomes associated with equilibrium E are the profile of type-dependent
expected utilities and probability of action a = 1 as a function of the evidence, i.e., given
by ({UE

θ (F )}θ∈Θ, {vE(e, F )}e∈E). Two equilibrium outcomes are equivalent if {U (·)
θ (F )}θ∈Θ

and {v(·)(e, F )}e∈E are the same for a probability one set of types and evidence realizations
respectively. With some abuse of terminology, we say a set of equilibria admit a unique
equilibrium outcome if the associated set of equilibrium outcomes are all equivalent to
each other.

16 That is, for all Borel Θ̂ ⊆ Θ and M̂ ⊆ M ,
∫
Θ̂
σ(M̂ |θ)dν0(θ) =

∫
M̂

ν1(Θ̂|m)
∫
Θ
dσ(m|θ)dν0(θ)

17 That is, for all Borel Θ̂ ⊆ Supp(ν1(·|m)) ,
∫
Θ̂
ζ(a|θ,m, e)dν1(θ|m) = ν2(Θ̂|m, e, a)

∫
Θ
ζ(a|θ,m, e)dν1(θ|m)

and Supp(ν2(·|m, e, a)) ⊆ Supp(ν1(·|m)).
18 Because our game consists of a communication stage prior to the revelation of an uncertain e, it does not

fit in the static signaling games studied in the literature. We are not aware of existing notions that formalize
this natural “ex-interim D1” refinement. Another alternative would be to use an “ex-ante D1” refinement,
i.e., after a deviation, the observer considers that the DM’s type could lie in the full type space Θ. One can
show that in our model this approach yields a less expositionally convenient but essentially identical set
of equilibria: every ex-ante D1 equilibrium is also an ex-interim D1 equilibrium, and every ex-interim D1
equilibrium outcome is the limit of some sequence of ex-ante D1 equilibrium outcomes.

19 We provide the formal definition of D1 in the context of our game in the Appendix.
20 While our outcome variables depend on all model parameters, the dependence on the investigation F

and equilibrium E is made explicit for expositional clarity.
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Discussion

Partisan Preferences: It is important to note that even though a high s type and P both
prefer the a = 0 for “essentially” all evidence realizations, this does not mean their pref-
erences are equivalent. This perspective ignores the main tradeoff the DM faces between
reputational and material payoffs, a tradeoff that makes the intensity of preferences over
actions important. If we instead modeled the “bad” P type as the highest s type, then this
would mean P prefers to take action a = 0 much more than he values reputation as com-
pared with non-partisans. Indeed, this is the interpretation of bad types in the canonical
Spence (1973) education model: bad types have a higher cost of education or, equivalently
and indistinguishably, a lower value for reputation. Most of our applications do not fit well
with this interpretation, e.g., it does not seem appropriate to model partisan politicians as
being defined by their lack of office motivation, or a corrupt regulator as not caring about
being fired.

Instead, as mentioned earlier, our preferences mirror those in Morris (2001). The distinc-
tion between good and bad types is that good types care more about getting the decision
“right” than bad types. For extreme evidence realizations, non-partisan types care more
about stakes of the decision, whereas partisans care more about reputation. However, for
middling evidence realizations, where the stakes of the decision are low for a non-partisan
type, this comparison is flipped.

Reputation for Non-Partisanship: We assume that reputational payoffs are purely de-
termined by the observer’s belief that θ ∈ S rather than their beliefs about which s type
the DM may be. This assumption streamlines our exposition and is natural in applications
in which s represents the DM’s transitory private information or idiosyncratic preferences
that are only relevant for the decision at hand. For example, a politician may possess clas-
sified information about the relevant scandal. However, in some settings the DM may have
have competing reputation concerns to appear as different s types; for example, a politician
may value appearing to have positions closer to the median voter in addition to appearing
non-partisan. In Section 6, we introduce a generalized version of Assumption 1 for the case
in which reputational payoffs depend on the observer’s belief about the DM’s standards.
Our appendix proves all of our results in this more general framework.

Commitment Versus Cheap Talk: We assume that the communication stage involves the
DM sending a cheap-talk message. However, in many of our motivating examples the
DM may have the option or obligation to commit to a contingent plan before the evidence
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is realized. For example, the FDA can mandate that its officials specify approval criteria
prior to the start of clinical trials and university admissions committees can have a policy
of prespecifying admissions criteria prior to receiving applications. In addition, DMs may
be able to “opt to commit,” even when they are not forced to, by verifiably delegating the
decision or making publicly enforceable statements. As Section 3 elaborates, the current
cheap-talk model admits an equilibrium where the DM effectively commits at the commu-
nication stage to a contingent plan as a function of the realized evidence. Subsection 6.1
shows that the unique equilibrium outcomes will be the same as this salient cheap-talk
equilibrium when the DM has access to commitment power.

3. Equilibrium Characterization

This section characterizes equilibrium behavior. First, we establish properties that must
hold across all equilibria in Lemma 1. Then we taxonomize the set of equilibria in Lemma 2.
It will be useful to make statements in terms of induced mappings from evidence to actions,
i.e., x ∈ X ≡ {x′ : E → {0, 1}}. Define thresholds ẽs ≡ s − c and the threshold contingent
plan xs(e) ≡ 1(e ≥ ẽs).

Lemma 1. For any equilibrium E , the following hold:

1. The P type positively mixes over all messages sent by N types, i.e., σ(·|P ) and ΣN(·) ≡∫
S
σ(·|s)dG(s) are mutually absolutely continuous.

2. N types choose actions consistent with xs with probability one, i.e.,∫
S

∫
E

∫
M

ζ(xs(e)|s,m, e)dσ(m|s)dF (e)dG(s) = 1.

3. After sending any optimal message m ∈ M∗
P , the P type positively mixes over the action

choices of s types who also send m, i.e.,

ν1(S|m) > 0 and ∀e, a,
∫
S

ζ(a|s,m, e)dν1(s|m) > 0 ⇐⇒ ζ(a|P,m, e) > 0.

The interpretation of the 1st and 3rd point is that P cannot be distinguished from N

following any “on-path” history. A key implication is that P is indifferent across mimicking
the behavior of any s type, at both the communication and decision stages. These points
follow from the high reputation incentives. If a message is sent only by P then it yields an
equilibrium reputation and utility of 0 for P . However, P can obtain an expected utility
of at least ρq − c by mimicking the strategy of some s type, which is strictly preferred by
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Assumption 1. Conversely, a message that is sent only by s types yields a reputation of
1, so P ’s equilibrium utility must be at least ρ − c. However, P gets at most an expected
reputation payoff, and thereby also utility, of ρq from following the equilibrium strategy,21

which is strictly less than ρ−c again by Assumption 1. The argument for why, after sending
message m, P mixes over the actions chosen by s types who also send m is similar, but has
to contend with the subtlety that the relevant utility bounds are now dependent on ν1(S|m)

instead of the prior q. The proof shows that any equilibrium ν1(S|m) is close enough to q
such that the above argument goes through.

The second point says the s type’s action choice as a function of the evidence (almost
surely) follows the fixed rule xs(e).22 To avoid probability one caveats, going forward we
focus on equilibria where N ’s actions correspond with xs(e) everywhere, i.e., ∀e ∈ E, s ∈ S.
The s type’s action choice is not only constant across equilibria and messages, but also
across parameters of the model such as the investigation and the type distribution of the
DM. This independence should not be misunderstood as arising because the s types choose
their ideal action unaffected by reputation incentives. Indeed, s types engage in “political
correctness” (Morris (2001)): in order to signal non-partisanship they select the partisan’s
less preferred action a = 1 for e ∈ (s − c, s) even though they prefer a = 0. Instead, the
reason that xs is selected by the s types is because it provides the highest signaling value
(independently of the equilibrium and investigation)—that is, xs maximizes the utility dif-
ference between s and P types over all contingent plans x ∈ X .

The intuition behind point 2 is as follows. Suppose first that both actions are on path
following some evidence realization e. This implies that P mixes over a = 1 and a = 0.
However, the type s̃ ≡ e + c has the same preferences as P given e, i.e., he has the same
trade off between the cost of a = 1 and reputation. Combined with the fact that N ’s utility
for a = 1 is decreasing in s, all s > s̃ must choose a = 0 and s < s̃ must choose a = 1, i.e.,
s types choose actions consistent with xs. Alternatively, if a = 0 (respectively a = 1) is off
path, then it must be that s > s̃ (respectively s < s̃) for every s ∈ Θm; otherwise, by D1,
the off-path action would be interpreted as originating from the s type that violates these
inequalities, and this off-path action would be a profitable deviation for P .

We next identify and categorize the set of equilibrium outcomes. For any equilibrium,
the communication stage conveys information about the standards of the DM conditional

21 This follows from corollary 2 in Hart and Rinott (2020): for any signal structure, and for any state ω, the
expected posterior belief of ω conditional on state ω is higher than the prior probability of ω.

22 The reason for the almost-surely caveat is that action choices are not pinned down for evidence-standards
pairs where e = ẽs. However, this set has zero probability given our assumption that either F or G are
atomless. Indeed, this is our only reason for making this assumption.
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on them being a non-partisan. We call this induced Bayes plausible information structure
Λ ∈ ∆(∆(S)) the information structure on standards (ISS) associated with the equilibrium
E .23 This is formally defined as, for each Borel H ⊂ ∆(S), Λ(H) =

∫
m∈M 1

(
ν1(·|m, θ ∈ S) ∈

H
)
dΣN(m).

Lemma 2. For each ISS, the set of associated equilibria admit a unique equilibrium outcome.

There are two main takeaways from the lemma. First, equilibrium outcomes can be
uniquely described by the associated information the communication stage conveys about
the standards of the DM. Second, every ISS is associated with an (potentially different)
equilibrium outcome. That is, unlike familiar cheap-talk models (e.g., Crawford and Sobel
(1982)), there is no monotonicity restriction on the equilibrium strategies of s types. More
importantly, this permissiveness means that in equilibrium the communication-stage mes-
sage can convey a wide range of information about s, from the perfectly informative ISS
where each s sends a different message to the perfectly uninformative ISS where all DM
types send the same message. At the beginning of the next section, we provide further
details about these salient extreme equilibria.

Lemma 1 and Lemma 2 provide an effective blueprint for constructing an equilibrium.
An equilibrium outcome is pinned down by its ISS which can be directly imputed to the
messaging strategies of the s types at the communication stage. Each of these s types
follow up with xs at the decision stage no matter which message they initially chose. P
mixes over all messages sent by the s types at the communication stage and all on-path
follow up contingent plans at the decision stage in order to ensure their own indifference.

The above heuristic for constructing equilibrium strategies is valid because of the fol-
lowing property: if, for some candidate equilibrium strategies, the P type is indifferent
across messages, then each s type’s incentive are ensured as well. Figure 1 displays the
reasoning. Consider s < s who send different messages m and m respectively. Suppose
the P type is indifferent between sending m and following up with xs (i.e., using threshold
ẽs), and sending m and following up with xs (i.e., using threshold ẽs). This means that the
expected reputational difference between the latter and the former strategy must be equal
to the material utility difference from switching their action choice for e ∈ (ẽs, ẽs), i.e., the
absolute value of the area K1 +K2 measured according to the distribution of evidence F .
But notice that if type s considers deviating from m and xs to m and xs, they only gain
the absolute value of K1 in material utility which does not compensate them for the rep-
utational loss of K1 + K2. Analogously if s considers deviating from m followed by xs to

23 Formally, Bayes-plausibility is satisfied if for all Borel S̃ ⊂ S, ν0(S̃) =
∫
µ∈∆(S)

ν(S̃)dΛ(µ).
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Figure 1: Difference in material utility between a = 1 and a = 0 for different DM types as a
function of evidence.

m followed by xs they lose the absolute value of K1 + K2 + K3 in material utility from
using the lower threshold, which is greater than the reputational gain K1 +K2. Thus, P ’s
indifference ensures each s type’s incentives.24

4. The Effects of Informative Stands

In light of Lemma 2, we refer to equilibria by their associated ISS. We describe the two
salient extreme cases below.

Ex-Ante and Ex-Post Signaling: We refer to the equilibrium associated with the perfectly
informative ISS as ex-ante signaling and denote it as equilibrium α. Under ex-ante sig-
naling, each s type sends a different message ms. Consistent with Lemma 1, P positively
mixes over these messages. After sending ms, the DM follows xs at the decision stage. In
other words, sending ms is tantamount to committing to a contingent plan, i.e., saying “I
will take action a = 1 if and only if e ≥ ẽs”. While there is still uncertainty about the DM’s
partisanship following message ms, the equilibrium has no residual strategic uncertainty:
there does not exist a positive probability set of m, e for which both actions are on-path
after message m and evidence e is realized.

24 Of course, each s type can consider other follow up contingent plans after deviating at the communica-
tion stage. The generalization of the point above is that xs maximizes the expected utility difference between
type s and type P across all contingent plans. The proof of Lemma 2 uses this to show that if P is deterred
from such deviations, then so is s.
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At the other extreme is the equilibrium associated with the uninformative ISS, which
we term ex-post signaling and denote as equilibrium β. Under ex-post signaling the DM
“babbles,” e.g., regardless of his type, he sends the same message interpreted as “I will
wait and see until the investigation concludes.” Ex-post signaling admits residual strategic
uncertainty under the weak condition that there exist two types s′, s′′ such that F (ẽs′) ̸=
F (ẽs′′). A unique feature of ex-post signaling is that because the communication stage is
uninformative, given an evidence realization e, the distribution of actions does not depend
on the investigation F , i.e., vβ(e, F ) ≡ vβ(e) is independent of F (and so we drop the
associated dependence).

The above description highlights the extent to which the DM can take “informative
stands” before the evidence realizes; under ex-ante signaling, he can effectively publicly
commit to his contingent plan. Alternatively, under ex-post signaling, the DM can de-
cide on a case-by-case basis, obviating the communication stage. Our main result looks
at how different communication protocols impact the probability of a = 1. First, we in-
troduce a technical condition. We say there is mild agreement if for every pair s′, s′′ ∈ S,
∃e ∈ Supp(F ) such that xs′(e) = xs′′(e), i.e. no two s types always choose different actions
in equilibrium.

Theorem 1. Ex-ante signaling delivers the highest probability of a = 1 among all equilibria, i.e.,
V α(F ) ≥ V E(F ) ∀E . This comparison is strict if E ̸= α has residual strategic uncertainty and
there is mild agreement.

The two actions are only differentiated in the model by the partisan’s bias towards a = 0;
indeed, if the partisan preferred a = 1 instead (c < 0), then the comparison in Theorem 1
would flip. Highlighting the case of ex-post signaling, Theorem 1 then says that the DM
goes against his partisan interests more when he takes the “most informative stands”, i.e.,
pre-specifies his contingent plan, rather than deciding on a case-by-case basis. In terms
of the applications, the politician who answers interviewers’ questions will tend to break
with party more, and universities will admit more donor or legacy applicants when using
holistic admissions. Beyond predictive implications, in many contexts it is plausible that
whether ex-ante or ex-post signaling outcomes prevail is a design decision which can be
informed by Theorem 1. Subsection 6.1 and Subsection 6.2 elaborate, showing how ex-ante
signaling outcomes arise uniquely for minor variations in the current model.

Depending on the parameters, certain ISS may correspond to the same equilibrium out-
comes as ex-ante signaling; for example, all equilibria have the same outcomes if the distri-
bution of evidence is degenerate. However, under mild agreement, if equilibrium actions
are not completely predictable at the decision stage, then the equilibrium delivers different
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outcomes than ex-ante signaling; in particular, a strictly lower probability of a = 1. All
imperfectly informative ISS are associated with an equilibrium with residual strategic un-
certainty if and only if each s type’s threshold results in a different probability of a = 1 (i.e.,
1− F (ẽs)). An example is the case where F has full support over R, which also guarantees
mild agreement.

Given that a = 1 is taken most often under ex-ante signaling, a natural follow up ques-
tion is whether the same comparison holds for each evidence realization. While it is diffi-
cult to make this comparison for arbitrary equilibria, we show such a ranking does indeed
hold when comparing ex-ante signaling to ex-post signaling.

Proposition 1. vα(e, F ) ≥ vβ(e) ∀e ∈ E.

It is worth noting that there is nothing “mechanical” about ex-ante signaling that leads
to a higher probability of a = 1. It is also not clear whether ex-ante or ex-post signaling
provides higher reputation incentives to take a = 1, and why this shouldn’t depend on
the parameters. Under ex-post signaling, following evidence realization e, P considers
whether to choose a = 1 and pool with s > e+ c, or to choose a = 0 and pool with s < e+ c,
while under ex-ante signaling, P can directly target any specific s type and effectively
commit to that type’s threshold. That is, vβ(e) depends only on G(e + c) whereas vα(e, F )
depends on the whole distribution G and the investigation F .

4.1. Intuition for Theorem 1 with Binary Standards

Suppose G is supported on two types s < s, F has full support on R, and, for notational
convenience, c = 1. Now let us compare the probability of a = 1 for each evidence realiza-
tion between ex-post and ex-ante signaling, i.e., vα(e, F ) to vβ(e). If e < ẽs or e > ẽs, then
Lemma 1 implies that all DM types take the same action—a = 0 and a = 1 respectively—
under all equilibria. In addition, by Lemma 1, the N types action choices do not depend
on the equilibrium. Thus the comparison turns on P ’s decision given pivotal evidence real-
izations e ∈ [ẽs, ẽs).

Consider such a pivotal evidence realization e. Under ex-ante signaling, P will mix
between ms and ms, and follow through with xs and xs respectively. Thus, the probability
that P takes a = 1 after e is the probability that he mimics the s type at the communication
stage, which is pinned down by P ’s indifference across messages:

ρ

(
να1 (S|ms)− να1 (S|ms)

)
= F (ẽs)− F (ẽs).
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Figure 2: Reputation as a function of P ’s strategy in the binary example when s, s are
equally likely and where vEP is a shorthand for the probability P takes a = 1 given e ∈
(ẽs, ẽs) under equilibrium E .

That is, the difference in reputation at ms relative to ms is proportional to the difference in
probability with which s takes a = 1 relative to s.

Under ex-post signaling, every DM type chooses the same message m0 ∈M at the com-
munication stage. Given evidence realization e at the decision stage, P similarly chooses
a = 1 with the probability that he mimics the s type, which is determined by

ρ

(
νβ2 (S|m0, 1, e)− νβ2 (S|m0, 0, e)

)
= 1.

Figure 2 illustrates how P shifts his strategy so that the reputation incentives compensate
him for the difference in material loss between mimicking s and s. Under ex-post signaling,
conditional on evidence e, the difference in P(a = 1) from pooling with s or s is 1, compared
with F (ẽs) − F (ẽs) < 1 under ex-ante signaling. In order to create a higher reputation
difference in the ex-post case, P must mimic s less frequently, which in turn means he
chooses a = 1 less frequently. This argument establishes that V α(F ) > V β(F ) in the binary-
standards environment.

The underlying force behind the above argument is that the P type is willing to promise
more ex-ante because this promise will only be called for a subset of evidence realizations.
Under ex-ante signaling, mimicking s as compared to s yields extra reputation regardless
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of whether these two types take different decisions ex-post. In contrast, under ex-post
signaling, the extra reputation from mimicking s as opposed to s only realizes when these
types take different decisions.25

While this intuition is compelling, it is difficult to extend this argument directly to show
a similar ranking holds with more standards types or across other equilibria. Instead, we
now take a different approach, one that proves useful when studying optimal information
design and provides additional insights into the forces behind Theorem 1.

4.2. Proof Sketch of Theorem 1

We first establish an inverse relationship between P ’s equilibrium expected utility and
the equilibrium probability of a = 1.

Lemma 3 (Opposing Interests).
For every equilibrium E ,

V E(F ) =
1

c

(
ρq − UE

P (F )
)
.

We label this as opposing interests because the investigator’s interests oppose P ’s in-
terests in equilibrium. In particular, it says that P and the investigator cannot be made
simultaneously better off through equilibrium selection. This relationship may seem intu-
itive as P and the investigator have opposing interests concerning the decision. However,
the game is not one of opposing interests between the investigator and P because (i) there is
a third party—the N type—and (ii) even fixing N ’s equilibrium behavior, P ’s payoffs also
depend on reputation. That is, both the investigator and P could be made better off by P
choosing a strategy which provides him with a higher expected reputation and a higher
probability of a = 1. Lemma 3 shows that this is not possible in equilibrium.

Another notable feature of the relationship between V E(F ) and UE
P (F ) is its simplicity. In

particular, conditional on the value of UE
P (F ), V

E(F ) does not depend on the investigation
F , or the distribution of standards G.

Given Lemma 3, proving Theorem 1 reduces to establishing that ex-ante signaling is
the P type’s least favorite equilibrium. We next make two observations. First, note that
all equilibria yield equivalent outcomes when F is degenerate, as in this case, there is no

25 This intuition echoes discussions from the expressive voting literature (e.g., Brennan and Hamlin (1998))
which argue that in elections where the voter is unlikely to be pivotal, the inherent value of expressing certain
preferences dominates in their voting decision relative to the instrumental value of implementing a preferred
policy.
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difference between the decision stage and the communication stage. Second, note that
Uβ
P (F ) is linear in F owing to the fact that vβ(e) is independent of F . Putting these points

together gives
Uβ
P (F ) = E[Uβ

P (δe)|e ∼ F ] = E[Uα
P (δe)|e ∼ F ],

where δe denotes the degenerate distribution on e. Thus, the comparison that Uα
P (F ) ≤

Uβ
P (F ) holds if Uα

P (F ) is convex in F , which we establish in the next lemma.

Lemma 4. Uα
P (F ) is convex in the investigation F .

The intuition for Lemma 4 follows from a fundamental property about Bayesian updat-
ing: adding probability that a given type sends some signal changes the corresponding
conditional belief on that type less if they already send that signal with high probability.
In our setting, this means that the belief that the DM is an N type following any message
is convex in the probability that P sends that message. This convexity is illustrated in
Figure 2. To see how convexity of reputation relates to convexity of the P type’s ex-ante
signaling utility Uα

P (F ), consider two investigations F and F and, for some λ ∈ (0, 1), let
Fλ = λF +(1−λ)F . P ’s material utility from sending message ms is linear in F : P chooses
a = 1 under Fλ with probability equal to the average of that under F and F . However, P
cannot achieve the “average reputation” at every ms because reputation is convex in the
rate at which he declares each message, which yields the convexity of Uα

P (·).26

Ex-Ante Signaling vs. Other Equilibria: We have shown that ex-ante signaling has a
higher probability of a = 1 than ex-post signaling. However, Theorem 1 says that ex-ante
signaling delivers a higher conviction probability than any other equilibrium. Our proof
shows how to use the first comparison to prove the second.

The idea is as follows. Fix an equilibrium E . Note that P ’s expected utility conditional
on sending a message m ∈M∗

P is the ex-post signaling equilibrium utility with prior equal
to the interim belief ν1(·|m). Using the comparison between ex-post and ex-ante signaling,
we obtain that P ’s expected utility conditional on sending message m under E is higher
than if one were to instead conduct ex-ante signaling with a prior given by the interim
belief under E after message m—namely, ν1(·|m).

Now consider an alternative messaging strategy which first selects a message accord-
ing to the original equilibrium strategy under E and then sends a follow up message ms

26 Let ν1(S|ms) and ν1(S|ms) be the corresponding reputations under F and F . In order to maintain the
reputation λν1(S|ms)+(1−λ)ν1(S|ms), the convexity of the reputation implies P would need to, for all s ∈ S,
declare ms at a rate less than the average across the equilibria induced by F and F . But this is impossible
since the total measure of P ’s messages must be preserved.
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according to the ex-ante signaling equilibrium given prior ν1(·|m). Conditional on send-
ing each initial message under this new strategy, the above logic implies that P ’s expected
utility is lower than under the original equilibrium E . The only remaining issue, is that
P may not be indifferent across messages. However, because this comparison holds for
every message, when P adjusts his strategy to reestablish indifference across all messages,
the resulting equilibrium is ex-ante signaling and his new equilibrium expected utility is
still lower than in the original equilibrium.

4.3. Comparing the DM’s Utility

Combining the investigator’s preference for ex-ante signaling with the fact that his in-
terests oppose that of P immediately yields that ex-ante signalling is P ’s least favorite
equilibrium. However, the properties of equilibria in Lemma 1 facilitate extending this
comparison to all DM types.

Corollary 1. For any F and two equilibria E , E ′,

1. UE
θ (F )− UE ′

θ (F ) is constant across θ ∈ Θ.

2. Uα
θ (F ) ≤ UE

θ (F ) ∀θ ∈ Θ; this inequality is strict if E has residual strategic uncertainty and
there is mild agreement.

Given Theorem 1 and Lemma 3, the second point follows directly from the first. The first
point says that the difference in utility between any two equilibria is type independent.
The idea is that (i) each s type chooses xs in every equilibrium, so their utility difference is
just given by the expected reputation difference from following xs, and (ii) P is indifferent
between mimicking any s type in any equilibrium, and so, similarly, P ’s expected utility
difference across equilibria is given by their expected reputation difference from following
xs. This result provides one rationalization for why politicians may “dodge the cameras”
and admissions committees may favor non-transparency—or, in our terminology, favor ex-
post signaling. This result also points to interesting questions about equilibrium selection
issues, which we address in Subsection 6.1.

5. Optimal Investigations

Having studied the impact of communication for an arbitrary fixed F , we now turn
to how the investigation affects the action choice of the DM. For the results in Section 3
and Section 4, we can be relatively agnostic about what the evidence represents: while
it is natural to think that it represents a belief about or expected value of an unknown
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state, nothing in our setup requires such an interpretation. We make the interpretation of
evidence explicit in this section: let e ∈ [0, 1] = E represent a posterior belief about a binary
state ω ∈ {0, 1} with prior e ∈ (0, 1), where each investigation represents an information
structure about ω.27

The relationship between the investigation and outcomes depends on the equilibrium. It
is worth noting that without communication, i.e., under ex-post signaling, standard “con-
cavification” techniques from the information-design literature can be applied to under-
stand this relationship. In this case, conditional on the evidence realization, the outcome is
independent of the investigation, so that V β(F ) =

∫
E
vβ(e)dF (e) is linear in F .

As shown by Theorem 1, ex-ante signaling outcomes are the investigator-preferred equi-
librium. In addition, as elaborated further in Subsection 6.1, we view ex-ante signaling out-
comes as focal because they arise naturally as either the result of institutional design and
commitment, or as the uniquely selected equilibrium under a compelling refinement. In
contrast to ex-post signaling, because of the informative communication stage, outcomes
depend on the investigation even conditional on the evidence realization under ex-ante sig-
naling, i.e., how P chooses which s type to mimic at the communication stage, and hence
vα(e, F ), depends on F . Thus, the probability of a = 1 is not linear in F . This invalidates the
use of concavification techniques. In this section we analyze how the investigator chooses
an investigation to maximize the probability of a = 1 under ex-ante signaling. This design
framing is directly relevant in many applications; an impeachment inquiry is often lead by
a member of the opposing political party, and the firm seeking a merger is responsible for
disclosing information to the FTC. Beyond the direct design question, our results reveal
comparative statics intuitions on how the investigation affects outcomes that are novel and
specific to the case in which DM takes informative stands.

5.1. Characterization

For this section, we assume the standards distribution G admits a continuous density g
with g(s) > 0 ∀s ∈ [c, 1 + c]. To calculate the investigator’s utility, we sum the probability
of a = 1 given message ms weighted by the probability that the DM sends message ms.
Letting F be the set of CDFs with support on [0, 1], and σ be the DM’s communication

27 In Appendix F, we discuss how our results extend to the case with more than two states.
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strategy under ex-ante signaling, the investigator’s design problem is

max
F∈F

∫
S

(1− F (ẽs)) (qg(s)ds+ (1− q)dσ(ms|P )) ,

such that
∫ 1

0

(1− F (e))de = e.

The constraint captures Bayes plausibility: the average posterior under F is the prior. In
order to solve this problem, we use Lemma 3, which shows that maximizing the investiga-
tor’s expected utility is equivalent to minimizing that of P . It is straightforward to derive
how F determines Uα

P (F ): we show in the proof of Lemma 4 that Uα
P (F ) is given by the so-

lution U to
∫
S

ρqg(s)
U+c(1−F (ẽs))

ds = 1.28 These observations allow us to rewrite the investigator’s
problem as follows:

min
U≥0, F∈F

U , (1)

such that
∫
S

ρqg(s)

U + c− cF (ẽs)
ds = 1,∫ 1

0

(1− F (e))de = e.

The extra constraint ensures the choice of U in (1) is equal to Uα
P (F ). We show that it is

without loss to relax both constraints to only hold as inequalities. This relaxed version of
the investigator’s problem minimizes a linear objective over a convex constraint set. We
can construct a Lagrangian which, with some standard ironing techniques, allows us to
solve for the optimal investigation.

Define H : E → R+ as H(e) ≡
∫ e
−∞ g(e′ + c)de′. Denote H as the concavification of H ,29

and h as its derivative in e, which is weakly decreasing and continuous in e.

Theorem 2. For k, U ∈ R, define F̂ (e; k, U) ≡ U/c+ 1− k
√
h(e). The uniquely optimal investi-

gation is given, for e < 1, by

F ∗(e) =


0 if F̂ (e; k, U) < 0,

F̂ (e; k, U) if F̂ (e; k, U) ∈ [0, 1],

1 if F̂ (e; k, U) > 1,

28 The derivation of this equation uses the following logic. P ’s indifference across messages provides an
expression for ν1(S|ms) in terms of the probability of a = 1 at ms—namely, 1− F (ẽs)—and Uα

P (F ). Because
g(s)q

ν1(S|ms)
is equal to the probability or density of ms, the sum of this fraction over ms is equal to 1.

29 The concavification of H is the pointwise lowest function over all concave H̃ : E → R+ such that
H̃(e) ≥ H(e) ∀e ∈ E.
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and ρ = 3.

with U = Uα
P (F

∗) as the partisan’s utility given F ∗ and some k > 0.

Because each s type uses a fixed threshold, H captures the probability that N types
choose a = 1 given evidence e. It is then well known that the curvature of H (or the
monotonicity of h) captures the information provision incentives when the investigator
faces only N types: providing information over regions where h is constant (decreasing)
increases (decreases) the probability that N chooses a = 1. Our characterization is also
in terms of h but these incentives are distorted by the fact that the investigator must also
persuade P .30

Figure 3 presents an example of an optimal investigation. In this example, the distri-
bution of non-partisan standards is single peaked, and so H is convex for small e, and
concave for large e, as illustrated in the left panel. Correspondingly, the concavification of
H is linear below ê and equal to H above ê, i.e., h is constant below ê and strictly decreas-
ing above ê. From the right panel of Figure 3, we see that F ∗ provides information in a
way that is consistent with N ’s information incentives below ê, but in contrast, provides
some information, in a smooth way, above ê at the detriment of N ’s outcomes. We develop
the sense in which these properties are general in the two following immediate corollaries,
stated without proof.

Corollary 2. The optimal investigation admits a continuous density for e ∈ (0, 1); in particular,
F ∗ has no interior mass points.

30 There are two remaining parameters in the characterization in Theorem 2: Uα
P (F

∗) and k. These are
jointly pinned down by the two constraints in (1). While an explicit expression is not always feasible, solving
these two equations numerically is straightforward.
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Corollary 2 implies that the uninformative investigation is never optimal. This result is
counterintuitive, as uninformative experiments can be optimal in the Bayesian persuasion
literature (Kamenica and Gentzkow (2011)), in particular, when certain concavity condi-
tions on the distribution of thresholds are met. While given a fixed F , these conditions
can be satisfied in our model, the key difference is that the distribution of thresholds is
endogenous to the investigation: P will tend to respond to a high probability of a par-
ticular evidence level by feigning standards that are just out of reach of such evidence.
Given the opposing interests lemma, this response by P leads the investigator to minimize
predictability about the realized evidence. We note that this tendency hinges on the com-
munication stage being informative; as we show in Appendix G, this “unpredictability” is
not a feature of the optimal investigation under ex-post signaling where an uninformative
investigation may be optimal.

Figure 4 provides intuition for the corollary. It depicts two investigations that differ only
around evidence e, with c = 1 for convenience. F has an (isolated) mass point of size ∆ at
evidence e, while F̃ equally splits this mass point on e to e + ε and e − ε. When ε > 0 is
small, because the density of s types g is continuous, the change in the probability of a = 1

from s types is second order. However, this change leads to a first-order increase in the
probability P takes a = 1. Notice that this argument does not refer to optimality: indeed,
imbuing unpredictability in the sense of locally spreading mass points can always increase
the probability of a = 1.

To see why the probability of a = 1 increases, consider two types s−, s+ as illustrated
in the left panel of the figure, with e − ε < ẽs− < e < ẽs+ < e + ε. Under F , s− chooses
a = 1 with ∆ higher probability than s+, so, to preserve P ’s indifference, the equilibrium
reputation payoff must be ∆ higher from sending ms− than ms+ . In contrast, under F̃ , ms−

and ms+ choose a = 1 with the same probability and therefore must command the same
reputation. The reputational payoff for these associated messages as a function of dσ(ms|P )
is illustrated in the right panel of Figure 4. As highlighted in Subsection 4.2, this reputation
is convex: as P increases dσ(ms|P ), the marginal decrease in the reputation for ms becomes
smaller. The right panel illustrates that, because of this convexity, when P equalizes his
strategy across ms+ and ms− , he achieves lower than the average reputation.31 Because of
the opposing interests lemma, this change benefits the investigator.

Corollary 3. The optimal investigation is fully informative if and only if h is constant.

31 There are other messages sent under ex-ante signaling, which now have higher utility for P . To restore
equilibrium, P would also have to reallocate some mass from {s−, s+} to these other messages. But this
would serve to decrease the reputation for these messages, preserving the conclusion.
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This corollary is a direct implication of the fact that F ∗(e) ∈ (0, 1) is constant in e, equiv-
alently F ∗ is supported on {0, 1}, if and only if h is constant. To understand this result,
recall that the monotonicity of h captures the investigator’s design incentives when only
facing non-partisans. Therefore, an alternative statement of Corollary 3 is that the inves-
tigator provides full information if and only if full information maximizes the probability
of a = 1 among non-partisans. Because F ∗ balances design incentives between both types,
this means that the investigator’s design goals for P align with that for s types when h is
constant, but are misaligned when h is decreasing.

At a high level, the intuition is as follows. All else equal, P benefits from correlating his
strategy with the s types. When the investigator increases the probability of evidence in an
interval, i.e., increases F (ẽs) − F (ẽs) for s > s, P reallocates mass from mimicking types
below s to types above s. If g is increasing, in which case h is constant, then this response
by P further correlates his strategy with that of the s types, and thereby tends to benefit P .
Conversely, if g is decreasing, this change in the investigation tends to miscorrelate P and
s types’ strategies and thereby harm P . Given the opposing interests lemma, the former
change harms the investigator, while the latter change benefits them.

5.2. Comparative Statics

We next explore comparatives statics of the investigation design problem. We begin by
documenting some basic changes in the parameters that increase the probability of a = 1.

Proposition 2. Let G̃ be a distribution of s that first-order stochastically dominates G. For any
fixed F , V α(F ) is higher under G than G′ and when ρ or q increases.32

32 One omitted parameter from this result is c. Although one might naturally conjecture that an increase in
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Because these comparisons hold for a fixed investigation F , they also hold for the in-
vestigator’s value in the design problem. The intuition for these comparative statics is
straightforward as each change can be seen as increasing the alignment between the DM
and investigator. An increase in q decreases the probability of the P type whose prefer-
ences are at odds with the investigator’s. Similarly, a first-order stochastic decrease in G

means that the non-partisan prefers a = 1 more often. By increasing ρ, we are increasing
the importance of reputation relative to material payoffs in the DM’s utility. This change
then reduces the misalignment between the partisan and investigator.

We next look at how the optimal investigation changes with the size of reputation in-
centives. We can interpret an increase in ρ as a decrease in the relative importance of the
decision at hand—i.e., the stakes of the decision are lower. Our next result charchterizes
how the informativeness of the investigation changes with the stakes of the decision.

Proposition 3. The optimal investigation F ∗ becomes less Blackwell informative as ρ or q increases.

We illustrate in Figure 5 how the optimal investigation changes with ρ in the example
from Figure 3. In the limiting case when ρ → ∞, P will fully mimic the distribution of s
types’ messages, and so the distribution of thresholds is investigation independent. This
means that the optimal investigation converges to the Bayesian persuasion solution for the
problem of maximizing conviction from s types: a point mass at 0 and at ê. As ρ decreases,
the optimal investigation puts more mass on e = 0, maintains 0 mass on [0, ê) where h is flat,
and decreases the density on evidence levels in [ê, 1) as well as increasing the probability
of e = 1—i.e., induces a mean preserving spread on evidence.

To see the intuition for Proposition 3, note first that regardless of ρ and q, the optimal
investigation puts 0 mass on regions where h is constant. When h is decreasing, the in-
vestigator balances two opposing incentives for the s types and P : the investigator wants
to hedge against P ’s strategic “targeting” by spreading out the distribution of evidence,
but wants to contract the optimal investigation for the s types because their distribution
over thresholds is concave. When q is large the contraction incentives for the s types are
weighted more, and so the optimal investigation is less informative. When ρ is large, P
seeks to mimic the s types more and is therefore less responsive to changes in the inves-
tigation. This makes the investigator’s hedging incentive with P less significant, again
leading to a less informative investigation.

c induces a lower probability of a = 1 from P and therefore hurts the investigator, the probability of a = 1
from s types is increasing in c (as can easily been seen from Lemma 1). Either force can dominate, making
comparative statics on c ambiguous.
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Our final comparative statics looks at the impact of mean-preserving spreads of the dis-
tribution s on the investigator’s utility. Such spreads can be interpreted as an increase in
the polarization of non-partisans. The comparative statics for mean-preserving spreads of s
are, in general, ambiguous. However, some of this ambiguity is an artifact of our bounded
evidence space: The s types above the support of F ∗ always take a = 0, and so a spread of
standards in this region can only increase the probability of a = 1. Our next result shows
that, under a regularity condition on g, and excluding these changes in “non-pivotal” s
types, a spread in the distribution of ideologies harms the investigator, i.e., decreases the
probability of a = 1.

Let F ∗ be the optimal investigation given s ∼ G. We say that G̃ (with associated density
g̃) is a pivotal mean-preserving contraction ofG if G̃ is a mean-preserving contraction ofG and
g(s) = g̃(s) for all s such that ẽs ̸∈ Supp(F ∗). One simple type of pivotal mean-preserving
contraction is one that contracts probability locally around some s such that F ∗(ẽs) ∈ (0, 1).

Proposition 4. Suppose that g is log-concave. If G̃ is a pivotal mean-preserving contraction of G,
then the investigator does better under G̃ than G.

The broad intuition is as follows. Consider spreading s and s so that they are further
away from each other. This spreads the material payoff difference from mimicking these
types for P as there are new evidence realizations between ẽs and ẽs. As a result the equilib-
rium reputation for ms and ms must also spread. However, because reputation is convex, a
similar logic to that in Subsection 4.2 shows that this increases the utility of P , and thereby
harms the investigator.
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6. Discussion and Extensions

6.1. Commitment and Equilibrium Selection

Our framework admits a wide array of equilibrium outcomes—one for each ISS. Recall
that under our most informative equilibrium—ex-ante signaling—it is as if the DM com-
mits to a contingent plan even though he only has access to cheap talk. However, there are
many natural ways in which exogenous commitment power can arise in our setting; for
example, the DM could publicly delegate the decision, put the decision plan in a legally
binding contract, or simply bear large lying costs (as in Kartik (2009)). In addition, such
commitment can be mandated externally; for example, government agencies and publicly
funded universities can be required to specify approval and admissions criteria respec-
tively. Motivated by this, we explore how endowing the DM with commitment power at
the communication stage affects outcomes in our model. We show that ex-ante signaling
outcomes are the unique equilibrium outcome if either (i) commitment is mandated, or (ii)
commitment is available and the DM has uncertainty about their eventual decision-stage
preferences at the communication stage.

The Commitment Model In the commitment model, the DM commits to a publicly ob-
served contingent plan x ∈ X instead of choosing a messaging and decision strategy. Fol-
lowing the commitment, evidence is realized, the action is taken according to x, and payoffs
are realized. The preferences of the DM are the same as that in Section 2. We maintain our
focus on equilibria that satisfy the D1 refinement. In the appendix, we provide a formal
definition of equilibrium in the commitment model.

Proposition 5. The commitment model admits a unique equilibrium outcome which is equivalent
to that under ex-ante signaling.

In the proof, we show that there is an equilibrium in which each s type chooses xs, with
P mixing over {xs}s∈S , which then generates the same equilibrium outcome as in ex-ante
signaling. The interpretation of the proposition can be broken down into two points. First,
ex-ante signaling outcomes remain when the DM actually commits to some xs, instead
of sending a message that is interpreted as such a commitment (as in ex-ante signaling).
Second, no other equilibrium outcomes can be sustained despite the introduction of com-
mitment.

The Optional Commitment Model The optional commitment model has two alterations
from our main model. First, at the communication stage, each DM has the option to commit
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to an arbitrary contingent plan as a function of the evidence, x ∈ X , which is publicly
observe. If the DM chooses this option then the game proceeds as in the commitment
model. However, unlike in the commitment model, the DM can abstain from commitment
and send a cheap-talk message instead, in which case the game proceeds as in our main
model. We continue to apply the D1 refinement. In the appendix, we provide a formal
definition of equilibrium in the optional commitment model.

Second, the preferences of the DM are perturbed as follows. The utility of the DM of
type θ, taking action a, given evidence e, and belief ν ∈ ∆(Θ) is given by u(θ, e, a, ν) + εa

where ε is a random variable that is mean 0, independent of other parameters, with sup-
port equal to [−δ, δ], with δ > 0 and an atomless distribution. The DM does not know ε at
the communication stage, but privately observes ε at the decision stage. The variable ε rep-
resents changing conditions between the communication and decision stages that are not
made public: a politician may privately learn that convicting a fellow party member under
investigation is actually more or less favorable for their party than previously expected. It
can also represent evidence from the investigation that is revealed privately to the DM but
not to the public. For example, certain findings of the Trump impeachment inquiry were
redacted for the public but revealed to senators making the impeachment decision.

Proposition 6. If, in addition to Assumption 1, ρ > 2max{ δ
q
, δ
1−q}, then the optional commitment

model admits a unique equilibrium outcome equivalent to that under ex-ante signaling.

The intuition for the result is as follows. Ex-ante signaling is the unique equilibrium with
no residual strategic uncertainty at the decision stage. Because the DM does not know ε at
the communication stage, equilibria with residual strategic uncertainty provide the benefit
of being able to adjust the action choice to the realization of ε at the decision stage. The
key observation is that this “option value” is greater for P than it is for s types. The reason
is that s will only take ε into account for pivotal evidence realizations, i.e., when e − s is
close to the difference in reputation between the two actions, while P , who does not care
about evidence, is responsive to ε at any evidence realization. Thus, if there exists some s
who faces residual strategic uncertainty in equilibrium and xs goes unused, then it will be
given a reputation of 1, which is not possible in equilibrium given the assumed high value
of reputation. This captures the intuition by which “dodging the cameras” is interpreted
negatively: being vague about one’s standards at the communication-stage signals a desire
to be responsive to idiosyncratic partisan preferences (ε) rather than the evidence.33

33 Committing to a policy ex-ante is also used for signaling value in Callander (2008). There, the policy
decision is a scalar rather than a function, however the intuition has similarity in that committing to extreme
policies signals a value for material payoff vs. reputation (in that paper, office motivation).
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Notice that the proposition holds for arbitrarily small preference shocks, but also for
large ones modulated by the weight on reputation ρ. When δ is large enough to violate the
inequality in Proposition 6, the option value from acting on the realization of ε could exceed
the reputational gains from committing at the communication stage. In this case, each xs

commitment would still garner a full reputation given the argument above, but could go
unused. That is, “dodging the cameras” is always interpreted negatively as compared with
stating your principals up front, but depending on the reputation incentives, this negative
perception may not provide sufficient deterrence for the DM.

6.2. Timing of Evidence Disclosure

In many settings, the timing of evidence disclosure is a choice of the investigator who
can choose to reveal some information before the DM has a chance to announce their con-
tingent plan: an investigation into a political scandal could leak details before the inquiry
is formally announced, or firms could publicly disclose financial records before submitting
their application for a merger to the FTC. When should the investigator release informa-
tion to the DM and, more broadly, how does the timing of disclosure affect equilibrium
outcomes?

To answer this question, we consider a version of our baseline model with two stages
of evidence disclosure. Before the DM sends a message, they observe an initial public
evidence state e0 ∼ F0. After the message is sent, the final evidence e1 ∼ F1(·|e0) is realized,
and an action is chosen. The preferences of the DM are the same as in Section 2 with only
the final evidence e1 being payoff relevant. Let F be the unconditional distribution of
e1.34 We maintain the focus on ex-ante signaling equilibria in each subgame following the
realization of e0, and so our timing results also apply to the commitment model.

Consider an investigator who can choose among different (F0, F1) with the same F . By
choosing different F0, he can span various timings of evidence disclosure. When F0 is de-
generate, all information is “back-loaded” until after the DM communicates, in which case
equilibrium outcomes correspond to those under ex-ante signaling. When F1 is degener-
ate, all information is “front-loaded” to before communication, in which case equilibrium
outcomes correspond to those under ex-post signaling. That is, even though we focus on
the ex-ante signaling equilibrium conditional on e0, front-loading disclosure generates ex-
post signaling outcomes due to the fact that when the evidence distribution is degenerate,
ex-ante signaling and ex-post signaling are identical. Our next result shows that the inves-
tigator prefers to back-load information relative to any other timing of disclosure.

34 More precisely, F (e1) =
∫
e0
F1(e1|e0)dF0(e0).
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Proposition 7. Among all F0 and F1 with the same F , F0 = F delivers the lowest P(a = 1), and
F1(·|·) = F delivers the highest P(a = 1).

This result follows from the convexity of Uα
P (·). Thus, delaying evidence disclosure

(while keeping the final distribution of e1 constant) hurts P and benefits the investigator.

6.3. State-Dependent Investigator Preferences

We have so far assumed that the investigator’s preferences are state independent—that
is, the investigator always prefers a = 1 and has a utility independent of e. In this section,
we consider an investigator whose value for action a = 1 increases in the evidence e but still
prefers a = 1 to a = 0. We maintain that e ∈ [0, 1] represents a posterior belief about a binary
state and G admits a continuous strictly positive density on [c, 1 + c]. The investigator’s
utility from action a and evidence e is now given by (e− sI)a where sI < 0.

Proposition 8. The investigator prefers ex-ante signaling to ex-post signaling. For sufficiently
high ρ, any optimal investigation under ex-ante signaling has no interior mass points.

The fact that the investigator prefers ex-ante signaling to ex-post signaling follows di-
rectly from Proposition 1. To see why the investigator still wants to ensure unpredictability,
i.e. set an investigation with no mass points, recall that the intuition provided for Corol-
lary 2 in Figure 4 used a local perturbation. This perturbation will allocate the increase in
probability of a = 1 to different evidence realizations, but since it is a local perturbation,
and the investigator’s utility is continuous in evidence, the effect of this disparity is sec-
ond order. The one subtlety comes from the fact that P responds to the perturbation by
recalibrating the probability with which he mimics s types with non-local thresholds; how-
ever, the proof shows that with high reputation incentives the positive effect illustrated in
Figure 4 dominates.

6.4. Reputation for Standards

We now extend the model to allow the DM to differentially value his reputation for
appearing as specific s types and maintain the same material payoffs. For some r : Θ → R+,
let ρ

∫
Θ
r(θ)dν(θ) be the reputation payoff when the public holds beliefs ν ∈ ∆(Θ). We

normalize r(P ) = 0.

We again focus on the case of high reputational concerns. Let r ≡ infs∈S r(s) and r ≡
sups∈S r(s). We adapt Assumption 1 as follows.

Assumption 2. ρ > max{ c(r+r)
r2−qr2 ,

c(r+r)
qr2

} and q < ( r
r
)2.
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Note that by setting r = r = 1 we recover our baseline model, in which case Assumption 2
is equivalent to Assumption 1. Roughly, Assumption 2 says that the difference between r

and r is not too large relative to the difference between r and r(P ) = 0, i.e., the difference
in reputational values for different s types does not trump the DMs reputational concern
to avoid appearing partisan. This specification is relatively flexible, e.g., it imposes no
monotonicity requirements on r(s) with respect to s. The role of Assumption 2 is identical
to that of our original Assumption 1 in our baseline model: it ensures that neither the P
type nor the s type will ever fully reveal themselves in equilibrium.

Our appendix proves all our results in this more general environment under Assump-
tion 2. In particular, the statements of results from Section 3, Section 4, Subsection 6.1, and
Subsection 6.2 remain unchanged. Other than the comparative statics on G, all results in
Section 5 and Subsection 6.3 go through with minor modifications.35

7. Conclusion

We introduce the possibility for a decision maker to communicate his intentions before
decision relevant evidence realizes. We show that there are a wide range of communication
strategies in equilibrium: any communication about standards is feasible and such infor-
mation can be highly informative about one’s intentions, namely it can completely reveal
the DM’s contingent plan. Our main result compares the outcomes across these equilib-
ria, establishing that the most informative stands lead the DM to break with his partisan
interests most frequently. We also explore how these informative stands shape the design
of investigations in ways that are qualitatively distinct from standard information-design
problems.

A number of questions remain for future work. We have studied the effects of communi-
cation prior to the evidence realization and decision for one type of reputational incentives:
our DM cares about his reputation for taking the right decision similar to the agent in Mor-
ris (2001). But this question is relevant for other signaling interactions and preferences such
as that in Spence and Zeckhauser (1971). For example, a college student seeking to signal
his ability (i.e., tolerance of difficult classes) can be forced to select their major before or
after experimenting with a few courses.

35 More specifically, to account for r(θ), when using assumptions on g(s) (e.g., continuity or monotonicity)
in our baseline model, we impose analogous assumptions for r(s)g(s). We also slightly redefine h and the
assumptions used in Proposition 6.
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A. Preliminaries

We begin by defining some useful notation. Given an equilibrium, let qm ≡ ν1(S|m)

be the interim belief the DM is an s type, q(m, e, a) ≡ ν2(S|m, e, a) be the posterior belief
that θ ∈ S after message m, action a and evidence e. To avoid unnecessary repetition,
we prove all of our results under the assumption of heterogeneous reputation for s—i.e.,
the reputational payoff is R(m, e, a) ≡ E[r(θ)|m, e, a] =

∫
Θ
r(θ)dν2(θ|m, e, a)—subject to

Assumption 2. If qm > 0, take Gm(s) = ν1({s′:s′≤s}|m)
ν1(S|m)

and Sm = Supp(Gm). For notational
simplicity, we will often drop dependence on F in UE

θ (F ) in the proofs below and for those
from Section 3 as it is held fixed. Let UE

θ,m be the equilibrium expected utility to θ from
sending message m.

Our first result uses Assumption 2 to place bounds on the reputations that may arise in
equilibrium. We say a is off-path after m, e if

∫
Θm

ζ(a|θ,m, e)dν1(θ|m) = 0.36 We say that a is
on-path after m, e if it is not off-path.

Lemma 5. Take any e ∈ E. For all m ∈ M and a ∈ {0, 1}, qm ≤ ρqr+c
ρr

< 1 and q(m, e, a) < 1.
For all m ∈M∗

P and on-path a after m and e, qm > 0 and q(m, e, a) > 0.

Proof. First, we show that UE
P,m ∈ [−c + ρqmr, ρqmr] for all m ∈ M . By Corollary 2 of Hart

and Rinott (2020), conditional on m, e and θ = P , the expected public belief that θ ∈ S,
namely

∑
a∈{0,1} q(m, e, a)ζ(a|P,m, e), is at most qm. Using R(m, e, a) ≤ rq(m, e, a), we then

have

UE
P,m =

∫
E

( ∑
a∈{0,1}

(−ca+ ρR(m, e, a))ζ(a|P,m, e)
)
dF (e)

≤
∫
E

( ∑
a∈{0,1}

ρrq(m, e, a)ζ(a|P,m, e)
)
dF (e)

≤ ρqmr.

For each message m ∈ M and e, Bayes plausibility requires there exists an action ae such
that q(m, ae, e) ≥ qm. UE

P,m must do weakly better than choosing ae after each e, so UE
P,m ≥∫

E
(−cae + ρR(m, ae, e))dF (e). Using R(m, e, ae) ≥ q(m, e, ae)r ≥ qmr, we then have −c +

ρqmr ≤ UE
P,m.

36 This definition is slightly different than that used in Ramey (1996), who imposes an additional restriction
when defining an equilibrium, if

∫
Θm

ζ(a|θ,m, e)dν1(θ|m) = 0 but ζ(a|θ,m, e) > 0 for some θ ∈ ν1(·|m), then
Supp(ν2(·|m, e, a)) ⊆ {θ ∈ Θm : ζ(a|θ,m, e) > 0}. Our results would not change if we imposed this additional
condition and defined off-path to be such that ζ(a|θ,m, e) = 0 for all θ ∈ Supp(Θm).
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We next derive similar bounds for the expected equilibrium payoff UE
P . Bayes plausibil-

ity implies that for some m ∈ M∗
P , qm ≤ q. For m ∈ M∗

P , UE
P = UE

P,m , which along with
UE
P,m ≤ ρqmr ≤ ρqr gives our desired upper bound. Bayes plausibility also implies that

for some m′ ∈ M , qm′ ≥ q. Because UE
P ≥ UE

P,m′ , our desired lower bound follows from
UE
P,m′ ≥ −c+ ρqm′r ≥ −c+ ρqr.

Next, for any m ∈ M , we show qm ≤ ρqr+c
ρr

< 1. Using −c + ρqmr ≤ UE
P,m ≤ UE

P ≤ ρqr,
we have qm ≤ ρqr+c

ρr
. If ρqr+c

ρr
≥ 1, then ρ ≤ c

r−qr , because r − qr > 0 per Assumption 2.
Using the same assumption ρ ≥ c(r+r)

r2−qr2 , so c
r−qr ≥

c(r+r)

r2−qr2 , which simplifies to 0 ≥ rr(1− q), a
contradiction.

Similarly, for any m ∈ M∗
P , using −c + ρqr ≤ UE

P = UE
P,m ≤ ρqmr, we have ρqm ≥ ρqr−c

r
.

By Assumption 2, ρ ≥ c(r+r)
qr2

> c
qr

, so ρqr−c
r

> 0, which implies qm > 0.

For the sake of contradiction, suppose q(m, e, a) = 1 for some m ∈ M, e ∈ E, which
implies qm > 0. Because qm < 1, q(m, e, a) = 1 implies ζ(a|P,m, e) = 0. Then R(m, e, a) ≥ r

while, for a′ ̸= a, R(m, e, a′) ≤ qmr. For P not to have a profitable deviation to choose a, it
must be that −ca′ + ρqmr ≥ −ca+ ρr, which implies qm ≥ c(a′−a)+ρr

ρr
≥ ρr−c

ρr
. Combining this

inequality with qm ≤ ρqr+c
ρr

and simplifying, we conclude that ρ ≤ c(r+r)

r2−qr2 , a contradiction of
Assumption 2. We conclude that q(m, e, a) < 1.

Next, suppose q(m, e, a) = 0 for some on-path a andm ∈M∗
P , which implies ζ(a|P,m, e) >

0. P ’s utility from taking action a is then −ca ≤ 0. For a′ ̸= a,R(m, e, a′) ≥
∫
Θ
r(θ)dν1(θ|m) ≥

qmr. For a to be an equilibrium action for P , it must be that −ca′+ρqmr ≤ −ca; simplifying,
we get ρqm ≤ c(a′−a)

r
≤ c

r
. Combining this inequality with ρqm ≥ ρqr−c

r
and simplifying, we

have ρ ≤ c(r+r)
qr2

, a contradiction of Assumption 2. We conclude that q(m, e, a) > 0. Q.E.D.

Using Ramey (1996), we now define the D1 refinement formally in the context of our
game. Recall that we are imposing the D1 refinement on the signaling game following
message m ∈M and evidence e with type space Θm.

Take any a that is off-path following some m, e (with a′ = 1− a). The reputation payoff
from a′ is then the interim reputation E[r(θ)|m] =

∫
Θ
r(θ)dν1(θ|m), so the equilibrium payoff

for each θ′ ∈ Θm following m, e is u(θ′, a′, e,E[r(θ)|m]).37 Suppose there exists non-empty

37 One might be worried that there exists a measure zero set of θ ∈ Θm take the off-path action a
(which is allowed by our definition of off-path), in which case we cannot directly infer that their equilib-
rium payoff is u(θ′, a′, e,E[r(θ)|m]). However, these payoffs are continuous in the type θ and are equal to
u(θ′, a′, e,E[r(θ)|m]) on a measure one set of θ, so they must be equal for all θ.
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Θ′
m ⊂ Θm such that, for all θ′′ ∈ Θm\Θ′

m, there exists θ′ ∈ Θ′
m for which

{ν ∈ ∆(Θm) : u
(
θ′′, e, a,

∫
Θm

r(θ)dν(θ)
)
> u

(
θ′′, e, a′,E[r(θ)|m]

)
} (2)

⊊ {ν ∈ ∆(Θm) : u
(
θ′, e, a,

∫
Θm

r(θ)dν(θ)
)
> u

(
θ′, e, a′,E[r(θ)|m]

)
}.

An equilibrium E violates D1 if the support of ν2(·|m, e, a) is not contained in Θ′
m; E satisfies

D1 if it does not violate D1.

We now show some implications of D1 on the equilibrium actions.

Lemma 6. Take any m ∈ M such that qm > 0. Let a be an off-path action following m, e and take
a′ = 1 − a. Then q(m, e, a) = 1 if (e − ẽs)(a

′ − a) < 0 for some s ∈ Sm and q(m, e, a) = 0 if
(e− ẽs)(a

′ − a) > 0 for all s ∈ Sm.

Proof. Let a be an off-path action following m, e. By qm > 0, Sm ̸= ∅. We note that

{ν ∈ ∆(Θm) : u(P, e, a,

∫
Θm

r(θ)dν(θ)) > u(P, e, a′,E[r(θ)|m])} ≠ ∅

⇐⇒ ρ(max
s∈Sm

r(s)− E[r(θ)|m]) > c(a− a′).

The last inequality holds if ρ(r− qmr) > c, or equivalently qm < ρr−c
ρr

, which holds because,
by Lemma 5, qm < ρqr+c

ρr
and ρqr+c

ρr
< ρr−c

ρr
by ρ ≥ c(r+r)

r2−qr2 (Assumption 2).

D1 requires ν2(P |m, e, a) = 0 (which implies q(m, e, a) = 1) if (2) holds for θ′′ = P and
some θ′ ∈ Sm, which simplifies to (e − ẽs)(a

′ − a) < 0 for some s ∈ Sm. Similarly, D1
requires ν2(Sm|m, e, a) = 0 (which implies q(m, e, a) = 0) if (2) holds for θ′ = P and all
θ′′ ∈ Sm, which simplifies to (e− ẽs)(a

′ − a) > 0 for all s ∈ Sm. Q.E.D.

B. Proofs from Section 3

Proof of Lemma 1

Proof. First, we show point 1. For the sake of contradiction, suppose σ(·|P ) and ΣN are
not mutually absolutely continuous. Then there exists M ′ ⊂M such that either σ(M ′|P ) >
ΣN(M

′) = 0 or ΣN(M
′) > σ(M ′|P ) = 0. In the first case, there exists m ∈ M ′ such that

qm = 0, contradicting Lemma 5. In the second case, there exists m ∈ M ′ such that qm = 1,
contradicting Lemma 5. Therefore, σ(·|P ) and ΣN(·) are mutually absolutely continuous.

Next, we prove point 2. Take any m ∈ M and s ∈ Θm such that e ̸= ẽs. Let a = xs(e)

and a′ = 1 − a. Because a′ > a if and only if e < ẽs, (e − ẽs)(a
′ − a) < 0. For the sake of
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contradiction, suppose ζ(a′|s,m, e) > 0. Then s (weakly) prefers a′ over a, so

(e− s)a′ + ρR(m, e, a′) ≥ (e− s)a+ ρR(m, e, a). (3)

Suppose ζ(a|P,m, e) > 0. Then P (weakly) prefers a over a′, so

−ca+ ρR(m, e, a) ≥ −ca′ + ρR(m, e, a′). (4)

Adding (4) to (3) and simplifying yields (e − ẽs)(a
′ − a) ≥ 0, a contradiction. Therefore,

ζ(a|P,m, e) = 0. If a is on-path, then q(m, e, a) = 1. If a is off-path, then, by Lemma 6,
q(m, e, a) = 1 because (e−ẽs)(a′−a) < 0. But q(m, e, a) = 1 contradicts Lemma 5. Therefore,
ζ(a′|s,m, e) = 0, i.e., ζ(xs(e)|s,m, e) = 1.

By definition of ν1, there cannot exist a positive probability set of s ∈ S for which
σ({m ∈ M : s ̸∈ Sm}|s) > 0. Therefore, there exists S ′ ⊆ S such that ν0(S ′|θ ∈ S) =

1 and each s ∈ S ′, with probability one, sends messages for which s ∈ Sm (namely,
σ({m ∈ M : s ∈ Sm|s) = 1), for which we have shown ζ(xs(e)|s,m, e) = 1 when e ̸= ẽs.
Because either F or G is atomless, the probability of (s, e) such that e = ẽs is zero, so∫
E

∫
S

∫
M
ζ(xs(e)|s,m, e)dσ(m|s)dG(s)dF (e) = 1.

Finally, we prove point 3. Take any arbitrarym ∈M∗
P and e, a. Then qm > 0 by Lemma 5.

If ζ(a|P,m, e) = 0 and
∫
S
ζ(a|s,m, e)dGm(s) > 0, then q(m, e, a) = 1, a contradiction of

Lemma 5. If
∫
S
ζ(a|s,m, e)dGm(s) = 0 and ζ(a|P,m, e) > 0, then q(m, e, a) = 0, a contradic-

tion of Lemma 5. Q.E.D.

Proof of Lemma 2

Take an arbitrary Λ ∈ ∆(∆(S)) that is Bayes plausible with respect to G. Parameterize
a set of messages by the induced belief on S, i.e., let mν ∈ M be such that mν ̸= mν′ for
ν, ν ′ ∈ ∆(S) such that ν ̸= ν ′ and take MΛ = {mν : ν ∈ Supp(Λ))}. Define ΣN ∈ ∆(M ) as
ΣN(M̃) ≡ Λ({ν : mν ∈ M̃}) for all Borel M̃ ⊆M .

Let q = ρr−c
ρr

and, adopting the convention that 0
0
= 0, define

R̃a(e, z; q̃, G̃) ≡


q̃
∫
S r(s)1(e≥ẽs)dG̃(s)

q̃G̃(e+c)+(1−q̃)z if a = 1,

q̃
∫
S r(s)1(e<ẽs)dG̃(s)

q̃(1−G̃(e+c))+(1−q̃)(1−z) if a = 0.

For q̃ ∈ (0, q) and G̃ a CDF over S, define z(·; q̃, G̃) in the following way. For e such that
G̃(e+ c) = 0, set z(e; q̃, G̃) = 0 and for e such that G̃(e+ c) = 1, set z(e; q̃, G̃) = 1. For e such
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that G̃(e+ c) ∈ (0, 1), let z(e; q̃, G̃) be the solution to

ρR̃1(e, z, q̃, G̃)− c = ρR̃0(e, z, q̃, G̃). (5)

We now show such a solution z exists, is unique and in (0, 1). Note that ρR̃1(e, 0, q̃, G̃)− c ≥
ρr − c and ρR̃0(e, 0, q̃, G̃) ≤ ρq̃r. By q̃ < q, at z = 0, the LHS of (5) is strictly greater than the
RHS. Moreover, ρR̃1(e, 1, q̃, G̃)− c ≤ ρq̃r − c and ρR̃0(e, 1, q̃, G̃) ≥ ρr. By q̃ < q, at z = 1, the
LHS of (5) is strictly less than the RHS. Because R̃1 is continuous and strictly decreasing in
z ande R̃0 is continuous and strictly increasing in z, there exists a unique z ∈ (0, 1) such
that (5) holds. It is immediate that z(e; q̃, G̃) is continuous in q̃.

With some abuse of notation, let R̃a(e; q̃, G̃) be equal to R̃a(e, z(e; q̃, G̃), q̃, G̃). For an
arbitrary q̃ ∈ (0, q) and CDF G̃ on S, define

w(e; q̃, G̃) =


ρq̃

∫
S
r(s)dG̃(s)− c if G̃(e+ c) = 1,

ρR̃0(e; q̃, G̃) if G̃(e+ c) ∈ (0, 1),

ρq̃
∫
S
r(s)dG̃(s) if G̃(e+ c) = 0.

Given our constructed strategy, this will correspond to the P type’s utility after evidence
realization e and having induced interim beliefs associated with (q̃, G̃) at the messaging
stage. We then define the expected payoff from w as

W (q̃; G̃) ≡
∫
E

w(e; q̃, G̃)dF (e).

Our next result gives some properties of W .

Claim 1. W (q̃; G̃) is continuous and strictly increasing in q̃ with W (q̃; G̃) ∈ [ρq̃r − c, ρq̃r] for
q̃ ∈ (0, q).

Proof. Continuity is easily seen from the fact that z(e; q̃, G̃) is continuous in q̃. That W is
strictly increasing in q̃ follows from the fact that w is strictly increasing in q̃ for all e.

We now showw(e; q̃, G̃) ∈ [ρq̃r−c, ρq̃r] (which immediately impliesW respects the same
bounds). That these bounds hold for w when G̃(e+ c) ∈ {0, 1} is obvious. Take e such that
G̃(e+ c) ∈ (0, 1). From (5), we have

R̃1(e; q̃, G̃) ≥ q̃

∫
S

r(s)dG̃(s) ≥ R̃0(e; q̃, G̃).

These inequalities imply R̃1(e; q̃, G̃) ≥ q̃r and R̃0(e; q̃, G̃) ≤ q̃r. Our desired bounds then
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follow from w(e; q̃, G̃) = ρR̃0(e; q̃, G̃) = ρR̃1(e; q̃, G̃)− c. Q.E.D.

We construct P ’s messaging strategy by specifying a Radon-Nikodym derivative ψ(·)
and defining σ(·|P ) via σ(M̂ |P ) =

∫
M̂
ψ(m)dΣN(m) for any Borel M̂ ⊆ M . When such

strategies are used, what will be the interim belief qm for m ∈ MΛ is given by φ(ψ(m)) ≡
q

q+(1−q)ψ(m)
. These will correspond to “on-path” interim updates followingm. For ν ∈ ∆(S),

we let Gν be the cdf over S corresponding to ν. We note that for all t > t ≡ q(1−q)
q(1−q) , we have

φ(t) < q.

By Assumption 2, ρ > c(r+r)

r2−qr2 , which implies ρr2−cr
r

− c > ρqr. Similarly, ρ > c(r+r)
qr2

implies
ρ > c

qr
, or equivalently ρqr−c > 0. Using these bounds and the bounds onW from Claim 1,

we have

lim
t↓t

W (φ(t), Gν) ≥ lim
t↓t

ρφ(t)r − c = ρqr − c =
ρr2 − cr

r
− c > ρqr, (6)

lim
t→∞

W (φ(t), Gν) ≤ lim
t→∞

ρφ(t) = 0 < ρqr − c.

For U ∈ [ρqr − c, ρqr], define ψ∗(U ;mν) to be the value of t such that U = W (φ(t), Gν).
We note that such an t exists and is unique follows from (6) and the fact that W (·, Gν) is
continuous. Because, in addition, φ(·) is continuous and strictly decreasing, ψ∗(U ;mν) is
continuous and strictly decreasing in U . By (6), this implies ψ∗(U ;mν) > t for all U ∈
[ρqr − c, ρqr] (and hence φ(ψ∗(U ;mν)) ∈ (0, q)).

Claim 2. There exists a unique U∗ ∈ [ρqr − c, ρqr] such that 1 =
∫
MΛ

ψ∗(U∗;mν)dΣN(mν).
Moreover, ρφ(ψ∗(U∗;mν))r − c > 0 for all mν ∈MΛ.

Proof. Take any mν ∈ MΛ. We note that φ(t) ⋚ q if and only if 1 ⋚ t. Let U = ρqr − c.
Because W (q̃;Gν) ≥ ρq̃r − c for all q̃ ∈ (0, q), we have

ρqr − c = U = W (φ(ψ∗(U ;mν)), Gν) ≥ ρφ(ψ∗(U ;mν))r − c.

Thus, q ≥ φ(ψ∗(U ;mν)), which impliesψ∗(U ;mν) ≥ 1 and
∫
MΛ

ψ∗(U ;mν)dΣN(mν) ≥
∫
MΛ

dΣN(mν) =

1.

Let U ′ = ρqr. Because, W (q̃;Gν) ≤ ρq̃r for all q̃ ∈ (0, q), we have

ρqr = U ′ = W (φ(ψ∗(U ′;mν)), Gν) ≤ ρφ(ψ∗(U ′;mν))r.

Thus, q ≤ φ(ψ∗(U ′;mν)), which implies ψ∗(U ′;mν) ≤ 1 and
∫
MΛ

ψ∗(U ′;mν)dΣN(mν) ≤∫
MΛ

dΣN(mν) = 1. Because ψ∗(·;mν) is continuous and strictly decreasing, there exists a
unique U∗ ∈ [ρqr − c, ρqr] such that 1 =

∫
MΛ

ψ∗(U∗;mν)dΣN(mν).
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Because ψ∗(U∗;m) can not be strictly greater than one for all m ∈ MΛ, there exists mν′ ∈
MΛ such that φ(ψ∗(U∗;mν′)) ≥ q. By Claim 1, we have

ρqr − c ≤ ρφ(ψ∗(U∗;mν′))r − c ≤ U∗ ≤ ρφ(ψ∗(U∗;mν))r

which implies ρφ(ψ∗(U∗;mν)) ≥ ρqr−c
r

. Then ρφ(ψ∗(U∗;mν))r − c > 0 if ρqr−c
r
r > c or

ρ > c(r+r)
qr2

, which holds by Assumption 2. Q.E.D.

We now construct an equilibrium E associated with the ISS Λ. As is well-known, for any
Bayes-plausible Λ, there exists a signal structure that induces it (Kamenica and Gentzkow
(2011)) which corresponds to a set of strategies {σ(·|s)}s∈S with σ(·|s) ∈ ∆(MΛ) for all
s ∈ S such that the posterior on S (conditional on θ ∈ S) after mν ∈ MΛ is ν. In particular
σ(mν |s) = 0 ∀s /∈ Supp(ν). Define σ(·|P ) by dσ(m|P ) = ψ∗(U∗;m)dΣN(m). Let ν1 be defined
as, for mν ∈MΛ and Borel Θ̃ ⊆ Θ,

ν1(Θ̃|mν) = φ(ψ∗(U∗;mν))ν(Θ̃\{P}) + (1− φ(ψ∗(U∗;mν)))1(P ∈ Θ̃),

and ν1(P |m) = 1 if m ̸∈MΛ.

The decision-stage strategies are given by

ζ(1|s,m, e) =


xs(e) if m = mν ∈MΛ, s ∈ Sm,

1
(
1 ∈ argmaxa u(s, e, a, R̃a(e; ν1(N |mν), Gν))

)
if m = mν ∈MΛ, s ̸∈ Sm,

1
(
1 ∈ argmaxa u(s, e, a, 0)

)
if m ̸∈MΛ,

ζ(1|P,m, e) =

z(e;φ(ψ∗(U∗;mν), Gν) if m = mν ∈MΛ,

0 if m ̸∈MΛ.

Formν ∈MΛ and on-path a followingmν , e, let ν2(·|m, e, a) be the Bayes update induced by
these strategies, i.e., ν2(Θ̃|mν , e, a) =

∫
Θ̃ ζ(a|θ,m,e)dν1(θ|mν)∫
Θ ζ(a|θ,m,e)dν1(θ|mν)

for all Borel Θ̃ ⊂ Θ; otherwise, we

set ν2(P |m, e, a) = 1. This generates a reputation of R(m, e, a) = R̃a(e;φ(ψ
∗(U∗;mν)), Gν)

for mν ∈ MΛ and a on-path following mν , e and R(m, e, a) = 0 otherwise. By construction
these strategies generate an expected utility for P of U∗.

Our next claim verifies that E is an equilibrium.

Claim 3. E is an equilibrium.

Proof. We start by verifying that P has no incentive to deviate. First, we consider the de-
cision stage. Take m ̸∈ MΛ. Then R(m, e, a) = 0 for all e, a so a = 0 is clearly optimal. Take
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mν ∈ MΛ. When Gν(e + c) ∈ (0, 1), z(e;φ(ψ∗(U∗;mν), Gν) ∈ (0, 1) implies P is indifferent
over actions by construction. P also clearly has no incentive to deviate to a = 1 when
Gν(e + c) = 0 because it is worse from a material and reputational perspective. Finally,
P has no incentive to deviate to a = 0 when Gν(e + c) = 1 as his payoff from a = 1 is at
least ρφ(ψ∗(U∗;mν)r − c > 0 and his payoff from a = 0 is zero. There is also no incentive
to deviate at the communication stage: P is indifferent across all mν ∈ MΛ by construction
and because U∗ ≥ ρqr − c > 0, strictly prefers the expected utility of U∗ from any mν ∈MΛ

to the expected utility of 0 from sending m ̸∈MΛ.

Next, we show that no s type has an incentive to deviate at the decision stage following
m ∈ MΛ such that s ∈ Sm; that there is no incentive to deviate after any other m follows
immediately from the definition of ζ . Take an arbitrary mν ∈ MΛ, s ∈ Smν and e. Set
a = xs(e) and a′ = 1 − a. By the definition of xs, (e − ẽs)(a − a′) ≥ 0. By the definition
of z and Claim 2, xs(e) ∈ Supp(ζ(·|P,mν , e)), so P ’s incentive constraint implies −ca +

ρR(mν , e, a) ≥ −ca′ + ρR(mν , e, a
′). If s has a strict incentive to deviate to a′, then (e− s)a+

ρR(mν , e, a) < (e−s)a′+ρR(mν , e, a
′). Subtracting P ’s incentive constraint and simplifying,

we get (e− ẽs)(a− a′) < 0, a contradiction.

Next, we consider s’s incentive to deviate at the communication stage. Because σ({mν ∈
MΛ : s ∈ Smν}|s) = 1, it suffices to show that s cannot do better than sending a message
mν ∈ MΛ such that s ∈ Smν . Take such an mν and suppose s has a profitable deviation to
announce message m′ and follow contingent plan x′ ∈ X , so that∫

E

((e− s)x′(e) + ρR(m′, x′(e), e))dF (e) >

∫
E

((e− s)xs(e) + ρR(mν , xs(e), e))dF (e).

Because P is indifferent across all m′ ∈ MΛ and, following m′, using strategy xs for all
s ∈ Sm′ , P (weakly) prefers to send mν and follow with xs than send m′ and follow with x′:∫

E

(−cxs(e) + ρR(mν , xs(e), e))dF (e) ≥
∫
E

(−cx′(e) + ρR(m′, x′(e), e))dF (e).

Adding these inequalities together and simplifying, we get
∫
E
(c+e−s)x′(e)dF (e) >

∫
E
(c+

e − s)xs(e)dF (e), a contradiction of xs ∈ argmaxx∈X
∫
E
(c + e − s)x(e)dF (e). Therefore, s

has no incentive to deviate at the communication stage.

Finally, we show that D1 is satisfied. It is trivially satisfied following m ̸∈ MΛ since
ν1(P |m) = 1.38 Take mν ∈ MΛ. The only off-path actions following mν occur when Gν(e +

38 This triviality comes from the fact that our D1 refinement is specified for interim beliefs. Because
ν1(P |m) = 1 after m /∈ MΛ, there is no uncertainty at the interim stage, and so our D1 refinement has no
bite. In general, our D1 refinement cannot restrict the beliefs for actions following “off-path messages” when
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c) ∈ {0, 1} by construction. If Gν(e+ c) = 1, then a = 0 is an off-path action. There are two
cases to consider: when e > maxs∈Smν

ẽs and when e = maxs∈Smν
ẽs. In the first case, by

Lemma 6, D1 requires ν2(P |mν , e, a) = 1 because e− ẽs > 0 for all s ∈ Smν . For the second
case, we now show that ν2(P |mν , e, a) = 1 is consistent with D1. D1 requires no weight be
placed on any s ∈ Θm whenever P has a larger incentive to deviate to a than s, namely

{ν ′ ∈ ∆(Θmν ) : (e− s)a′ + ρ

∫
Θmν

r(θ)dν ′(θ) > (e− s)a+ ρ

∫
Θmν

r(θ)dν1(θ|mν)}

⊊ {ν ′ ∈ ∆(Θmν ) : −ca′ + ρ

∫
Θmν

r(θ)dν ′(θ) > −ca+ ρ

∫
Θmν

r(θ)dν1(θ|mν)},

which rules out all s < maxSmν when e = maxs∈Smν
ẽs. However, the above sets are equal

for s′ = maxSmν at such e, in which case any beliefs that ascribe probability only on s′ and
P are consistent with D1. Thus, ν2(P |mν , e, a) = 1 is consistent with D1. An analogous
argument holds for when Gν(e+ c) = 0. Q.E.D.

We know by Lemma 1 that the N ’s distribution over actions and evidence is unique
(and the same for all ISS) up to zero probability events. That P ’s equilibrium distribution
is unique follows from the fact that that ψ∗(U∗;m) defines the unique messaging strat-
egy that leaves P indifferent across messages mν ∈ MΛ and z(e;φ(ψ∗(U∗;mν)), Gν) is the
unique mixture over equilibrium mixture over actions given interim beliefs (qm, Gm) =

(φ(ψ∗(U∗;mν)), Gν). While an equilibrium may feature multiple messages that induces the
same Gν contingent on θ ∈ S, P must mix over these messages that are in M∗

P with the
same probability inducing the same interim belief φ(ψ∗(U∗;mν)) over all such messages;
if not, one would have a φ(ψ∗(U∗;mν)) higher than the another such message, which P

would then strictly prefer. Thus, in any equilibrium with ISS Λ, the joint distribution of a, e
is unique. By Lemma 1, P is indifferent between mimicking the strategy of each s type.
Therefore, for each m ∈ M∗

s , U∗ =
∫
E
(−cxs(e) + ρR(m, e, xs(e)))dF (e), so s’s equilibrium

utility is
∫ 1

0
(e − s)xs(e) + ρR(m, e, xs(e)))dF (e) =

∫
E
(e − s + c)xs(e)dF (e) + U∗. Thus, the

expected utility of s is unique by the uniqueness of U∗. Thus, in any equilibrium with an
ISS Λ, the equilibrium outcomes are unique.

C. Proofs from Section 4

Lemma 7 (Opposing Interests).
For every equilibrium E , V E(F ) = 1

c

(
ρE[r(θ)]− UE

P (F )
)
.

they place full weight on a single type, so a similar conclusion can be shown to hold for other “ex-ante” D1
refinements.
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Proof. Take any equilibrium E . Because of Lemma 1, after m ∈ M∗
P , P is indifferent across

mimicking the strategy of a probability one set of s ∈ Sm:

UE
P (F ) =

∫
E

(
− cζ(1|s,m, e)

+ ρ{ζ(1|s,m, e)R(m, e, 1) + ζ(0|s,m, e)R(m, e, 0)}
)
dF (e)

The same equality holds if we replace s with P . Taking expectations of both sides with
respect to ν1(·|m) and using the law of iterated expectations then yields

UE
P (F ) =

∫
S

{∫
E

(
− cζ(1|θ,m, e)

+ ρ{ζ(1|θ,m, e)R(m, e, 1) + ζ(0|θ,m, e)R(m, e, 0)}
)
dF (e)}dν1(θ|m)

= −cP(a = 1|m) + ρE[r(θ)|m].

Taking the ex-ante expectation of both sides over messages in M∗
P (which is a probabil-

ity one set under σ(·|P ) and ΣN(·) by Lemma 1) and again applying the law of iterated
expectations then yields

UE
P (F ) =

∫
M∗

P

(−cP(a = 1|m) + ρE[r(θ)|m])(qdσ(m|P ) + (1− q)dΣN(m))

= −cP(a = 1) + ρE[r(θ)]

Rearranging terms and using V E(F ) = P(a = 1) then yields our desired result. Q.E.D.

Proof of Lemma 4

Proof. We first derive an equation for determining Uα
P (F ). Because of the uniqueness in

Lemma 2, it is without loss to focus on our constructed equilibrium in the proof of that
lemma for the perfectly informative ISS. Under this equilibrium each message in MΛ is
associated with a single non-partisan type s, denote it ms, in the sense that Sms = {s}.
Both s and P follow up each ms with xs. This means that their reputation after m, e
is R(ms, e, xs(e)) = ν1(s|ms). Because ΣN(·) and σ(·|P ) are mutually absolutely continu-
ous, we can describe P ’s messaging strategy by the Radon-Nikodym derivative ψ(ms) =
dσ(ms|P )
dΣN (ms)

so that σ(M̂ |P ) =
∫
M̂
ψ(ms)dΣN(ms) for each M̂ ⊆ MΛ. Thus, by Bayes rule,

R(ms, e, xs(e)) =
qr(s)

q+(1−q)ψ(ms)
for all e. P ’s expected material payoff from xs is −c(1−F (ẽs))
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and so his utility is given by

Uα
P (F ) = −c(1− F (ẽs)) + ρ

qr(s)

q + (1− q)ψ(ms)
∀s ∈ S.

We then have q + (1 − q)ψ(ms) = ρqr(s)
Uα
P (F )+c(1−F (ẽs))

. Taking the expectation over both sides
with respect to s and using, by σ(ms|s′) = 1(s′ = s),

∫
S
ψ(ms)dG(s) =

∫
S
ψ(ms)dΣN(ms) =∫

M
dσ(m|P ) = 1, we have

1 =

∫
S

ρqr(s)dG(s)

Uα
P (F ) + c− cF (ẽs)

. (7)

Take an arbitrary pair of CDFs F1, F2 and λ ∈ (0, 1) and define Fλ = λF1 + (1 − λ)F2.
Using (7), we then have∫

S

ρqr(s)dG(s)

Uα
P (Fλ) + c− cFλ(ẽs)

(8)

= λ

∫
S

ρqr(s)dG(s)

Uα
P (F1) + c− cF1(ẽs)

+ (1− λ)

∫
S

ρqr(s)dG(s)

Uα
P (F2) + c− cF2(ẽs)

≥
∫
S

ρqr(s)dG(s)

λUα
P (F1) + (1− λ)Uα

P (F2) + c− c(λF1(ẽs) + (1− λ)F2(ẽs))

=

∫
S

ρqr(s)dG(s)

λUα
P (F1) + (1− λ)Uα

P (F2) + c− cFλ(ẽs)
,

where the inequality follows from the fact that 1
y

is convex in y. This inequality implies
Uα
P (Fλ) ≤ λUα

P (F1) + (1− λ)Uα
P (F2). Q.E.D.

As discussed in the text, Uα
P (δe) = Uβ

P (δe) for all e, so Lemma 4 implies

Uα
P (F ) ≤

∫
E

Uα
P (δe)dF (e) =

∫
E

Uβ
P (δe)dF (e) = Uβ

P (F ). (9)

Note that the inequality in (8) is strict if there exists S ′ ⊆ S such that
∫
S′ dG(s) > 0 and

F1(ẽs) ̸= F2(ẽs) for all s ∈ S ′, in which case we have Uα
P (Fλ) < λUα

P (F1) + (1 − λ)Uα
P (F2).

In (9), we are taking a convex combination over δe, so the inequality is strict if there exists
S ′, E ′ such that

∫
S′ dG(s) > 0,

∫
E′ dF (e) > 0 and δe(ẽs) = 1(e ≥ ẽs) ̸= 1(e′ ≥ ẽs) = δe′(ẽs) for

all s ∈ S ′ and e, e′ ∈ E ′. Suppose β has residual strategic uncertainty and mild agreement
holds and, for the sake of contradiction, that no such S ′, E ′ exist. Then for a probability
one set of s types, either F (ẽs) = 0 or F (ẽs) = 1. If F (ẽs) = 0 for a probability one set of s,
then there is no residual strategic uncertainty, a contradiction. A similar argument holds if
F (ẽs) = 1 for a probability one set of s. Therefore, there must exist a positive probability
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set of s′ such that F (ẽs′) = 0 and a positive probability set of s′′ such that F (ẽs′′) = 1. But
then there is no e ∈ Supp(F ) for which xs′(e) = xs′′(e), a contradiction of mild agreement.
Thus, under mild agreement and residual strategic uncertainty for β, Uα

P (F ) < Uβ
P (F ). We

use this observation in the proof of Theorem 1 below.

Proof of Theorem 1

Proof. Take any equilibrium E with strategies {σ(·|θ)}θ∈Θ and recall that ΣN(·) =
∫
S
σ(·|s)dG(s).

By Lemma 3, it suffices to show UE
P (F ) ≥ Uα

P (F ), with a strict inequality if E has residual
strategic uncertainty and there is mild agreement.

Recall that Gm and qm are the interim beliefs associated after m ∈ M∗
P in E and define

Uβ,m
P (F ) to be the ex-post signaling utility when s ∼ Gm, P(θ ∈ S) = qm and e ∼ F . Note

that UE
P (F ) = Uβ,m

P (F ) ∀m ∈ MP . P ’s utility following message m and evidence e is given
by Uβ,m

P (δe).

Define Uα,m
P (F ) to be the (unique) value of U that solves

∫
S

ρqmr(s)
U+c−cF (ẽs)

dGm(s) = 1.39 We
now show Uβ,m

P (δe) = Uα,m
P (δe). It suffices to show

∫
S

ρqmr(s)

Uβ,m
P (δe)+c−cδe(ẽs)

dGm(s) = 1. Suppose
Gm(e+ c) ∈ (0, 1). Let z be the probability P selects a = 1 when evidence is e; by Lemma 1,
z ∈ (0, 1). Then a = 0 is an optimal action for P , so Uβ,m

P (δe) = ρ
qm

∫
S r(s)1(e<ẽs)dGm(s)

qm(1−Gm(e+c))+(1−qm)z
, which

implies qm(1−Gm(e+ c))+(1− qm)z =
ρqm

∫
S r(s)1(e<ẽs)dGm(s)

Uβ,m
P (δe)

. Similarly, because a = 1 is also

an optimal action, Uβ,m
P (δe) = ρ

qm
∫
S r(s)1(e≥ẽs)dGm(s)

qmGm(e+c)+(1−qm)z
− c, which implies qmGm(e + c) + (1 −

qm)z =
ρqm

∫
S r(s)1(e≥ẽs)dGm(s)

Uβ,m
P (δe)+c

. Adding these together, we have

1 =
ρqm

∫
S
r(s)1(e ≥ ẽs)dGm(s)

Uβ,m
P (δe) + c

+
ρqm

∫
S
r(s)1(e < ẽs)dGm(s)

Uβ,m
P (δe)

=

∫
S

ρqmr(s)

Uβ,m
P (δe) + c− c1(e < ẽs)

dGm(s)

=

∫
S

ρqmr(s)

Uβ,m
P (δe) + c− cδe(ẽs)

dGm(s).

The argument when Gm(e+ c) ∈ {0, 1} is analogous.

39 That a unique solution exists follows from the following arguments. As shown in the proof of Lemma 5,
ρqmr > c which implies

∫
S

ρqmr(s)
U+c−cF (ẽs)

dGm(s) > 1 when U = 0. Because
∫
S

ρqmr(s)
U+c−cF (ẽs)

dGm(s) is strictly

decreasing in U with a limit of 0 as U → ∞, a unique solution to
∫
S

ρqmr(s)
U+c−cF (ẽs)

dGm(s) = 1 exists.
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By the arguments made in Lemma 4, Uα,m
P (·) is convex and so,40 for allm ∈M∗

P , we have

Uα,m
P (F ) ≤

∫
E

Uα,m
P (δe)dF (e) =

∫
E

Uβ,m
P (δe)dF (e) = Uβ,m

P (F ) = UE
P (F ). (10)

For the sake of contradiction, suppose Uα
P (F ) > UE

P (F ). Then, by (10), Uα
P (F ) > Uα,m

P (F )

for all m ∈ M∗
P . By Lemma 1, ΣN(M

∗
P ) = σ(M∗

P |P ) = 1, we can take the expectation over
m ∈M∗

P of both sides of
∫
S

ρqmr(s)
Uα,m
P (F )+c−cF (ẽs)

dGm(s) = 1 to get

1 =

∫
M∗

P

[ ∫
S

ρqmr(s)dGm(s)

Uα,m
P (F ) + c− cF (ẽs)

]
(qdΣN(m) + (1− q)dσ(m|P )) (11)

=

∫
S

∫
M∗

P

ρqr(s)

Uα,m
P (F ) + c− cF (ẽs)

dσ(m|s)dG(s),

>

∫
S

∫
M∗

P

ρqr(s)

Uα
P (F ) + c− cF (ẽs)

dσ(m|s)dG(s)

=

∫
S

ρqr(s)

Uα
P (F ) + c− cF (ẽs)

dG(s)

= 1

where the second equality follows from Bayes rule, the inequality follows from Uα
P (F ) >

Uα,m
P (F ) and the final equality by (7) in the proof of Lemma 4, a contradiction. Therefore,

we conclude that Uα
P (F ) ≤ UE

P (F ).

Finally, suppose that Uα
P (F ) = UE

P (F ) when there is mild agreement and residual strate-
gic uncertainty in E . As we have shown after Lemma 4, mild agreement and residual
strategic uncertainty implies

∫
E
Uβ,m
P (δe)dF (e) > Uα,m

P (F ) so, by (10), Uα
P (F ) > Uα,m

P (F ) for
m ∈ M∗

P . The same arguments as above in (11) lead to a contradiction. Therefore Uα
P (F ) <

UE
P (F ) when there is mild agreement and residual strategic uncertainty in E . Q.E.D.

Proof of Proposition 1

Proof. For notational simplicity, we drop dependence of vα on F . Take any e ∈ E. The
proof is immediate ifG(e+c) = 0 as vα(e) = vβ(e) = 0 or ifG(e+c) = 1 as vα(e) = vβ(e) = 1.
Suppose G(e + c) ∈ (0, 1). Note that vα(e) =

∫
S
1(e ≥ ẽs)(qdG(s) + (1 − q)dσ(ms|P )). Let

ψ(ms) = dσ(ms|P )
dΣN (ms)

be the Radon-Nikodym derivative as in the proof of Lemma 4. Using
the fact that σ(ms|s′) = 1(s = s′) under ex-ante signaling, we have vα(e) =

∫ e+c
−∞ (q + (1 −

40 The arguments in Lemma 4 showing Uα
P (F ) is convex only relied on the fact that Uα

P (F ) is the solution
to

∫
S

ρqr(s)dG(s)
U+c−cF (ẽs)

= 1, and so apply to Uα,m
P as well.
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q)ψ(ms))dG(s). As shown in the proof of Lemma 4, q + (1 − q)ψ(ms) = ρqr(s)
Uα
P (F )+c−cF (ẽs)

, so

vα(e) =
∫
S

ρqr(s)1(e≥ẽs)
Uα
P (F )+c−cF (ẽs)

dG(s).

Let Gr(e) ≡
∫
S
r(s)1(e ≥ ẽs)dG(s) and G

r
(e) ≡

∫
S
r(s)1(e < ẽs)dG(s). It is straightfor-

ward to show that vβ(e) is the unique solution to

ρqGr(e)

vβ(e)
− c =

ρqG
r
(e)

1− vβ(e)
.

This means vβ(·) does not depend on F and only depends on (G, r) throughGr(·) andG
r
(·).

We show that vα(e) − vβ(e) ≥ 0 by showing that this inequality holds when we se-
lect the distribution of s and reputations (Ĝ, r̂) to minimize vα(e) while holding vβ(e)

fixed. This latter requirement is equivalent to requiring
∫
E
r̂(s)1(e ≥ ẽs)dĜ(s) = Gr(e)

and
∫
S
r̂(s)1(e < ẽs)dĜ(s) = G

r
(e) in which case we refer to (Ĝ(s), r̂) as feasible.

It is without loss to focus on F such that Supp(F ) is contained in a compact interval.41

We then construct a feasible (Ĝ, r̂) where Ĝ has binary support and yields a lower vα(e)
than (G, r). Take some s′′ < min Supp(F ) + c and s′ > maxSupp(F ) + c. Define (Ĝ, r̂) by

(Ĝ(s), r̂(s)) =


(0, r(s)) if s < s′′,

(G(e+ c), Gr(e)
G(e+c)

) if s′′ ≤ s < s′,

(1, G
r
(e)

1−G(e+c)
) if s ≥ s′.

Let U and Û be the corresponding ex-ante signaling equilibrium expected utilities for P
under (G, r) and (Ĝ, r̂) respectively. We will show that the difference between vα(e) under
(G, r) and (Ĝ, r̂) is given by

∫
E

ρqr(s)1(e ≥ ẽs)

U + c− cF (ẽs)
dG(s)− ρqGr(e)

Û + c
≥ max

{
ρqGr(e)(Û − U)

(U + c)(Û + c)
,
ρqG

r
(e)(U − Û)

UÛ

}
,

which is greater than 0 for any Û , U . To see the the LHS is greater than the first term on the

41 For any F with unbounded support, we can consider a version of F truncated at [−z, z] for some z ∈ R;
taking z → ∞, it is straightforward to show that the value of vα(e) under the truncated F will converge to
the value of vα(e) under the original F .
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RHS, ∫
S

ρqr(s)1(e ≥ ẽs)

U + c− cF (ẽs)
dG(s)− ρqGr(e)

Û + c
≥

∫
S

ρqr(s)1(e ≥ ẽs)

U + c
dG(s)− ρqGr(e)

Û + c

=
ρqGr(e)

U + c
− ρqGr(e)

Û + c
=
ρqGr(e)(Û − U)

(U + c)(Û + c)
.

To see that the LHS is greater than the second term on the RHS, note that by the definition
of U and Û

∫
S

ρqr(s)
U+c−cF (ẽs)

dG(s) = 1 =
∫
S

ρqr̂(s)

Û+c−cF (ẽs)
dĜ(s), which implies

∫
S

ρqr(s)

U + c− cF (ẽs)
dG(s) =

ρqGr(e)

Û + c
+
ρqG

r
(e)

Û
.

Rearranging terms, we get∫
E

ρqr(s)1(e ≥ ẽs)

U + c− cF (ẽs)
dG(s)− ρqGr(e)

Û + c
=
ρqG

r
(e)

Û
−
∫
S

ρqr(s)1(e < ẽs)

U + c− cF (ẽs)
dG(s)

≥ ρqG
r
(e)

Û
−
∫
S

ρqr(s)1(e < ẽs)

U
dG(s)

=
ρqG

r
(e)

Û
− ρqG

r
(e)

U

=
ρqG

r
(e)(U − Û)

UÛ
.

We conclude that vα(e) is (weakly) smaller under (Ĝ, r̂). Thus, vα(e) is minimized using
a binary support Ĝ. For a binary support {s, s}, vα(e) − vβ(e) is zero for e ̸∈ [ẽs, ẽs), and
constant for e ∈ [ẽs, ẽs), so Theorem 1 establishes that vα(e)− vβ(e) ≥ 0. Q.E.D.

D. Proofs from Section 5

We will state the proof of Theorem 2 below for the model allowing for differential type
reputations. The results in this more general model are identical to those in our baseline
model after, for e ∈ [0, 1], redefining H(e) ≡

∫ e
−∞ h(e′)de′ where h(e) ≡ r(e + c)g(e + c)

and h(e) accordingly. We now assume that r(s)g(s) is continuous (rather than just g being
continuous). In the proofs below, we will use the fact, as shown in the proof of Lemma 3,
that Uα

P (F ) is the unique U that solves
∫
S

ρqr(s)
U+c−cF (ẽs)

dG(s) = 1.
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Proof of Theorem 2

Proof. Note that by definition
∫
S

ρqr(s)g(s)
U+c−cF (ẽs)

ds =
∫
E

ρqh(e)
U+c−cF (e)

de. We solve the following re-
laxed version of the investigator’s problem:

min
U≥0,F∈F

U (12)

subject to
∫
E

ρqh(e)

U + c− cF (e)
de ≤ 1,∫ 1

0

(1− F (e))de ≤ e.

Both constraints are convex in U and F . By Theorem 1 (Chapter 8) of Luenberger (1997),
there exist multipliers η, λ ≥ 0 such that any solution U∗, F ∗ to (12) will solve42

min
U≥0,F∈F

U + η

[ ∫
E

ρqh(e)

U + c− cF (e)
de− 1

]
+ λ

[ ∫ 1

0

(1− F (e))de− e

]
.

Complementary slackness conditions imply each multiplier η, λ is strictly positive only
if its corresponding constraint binds; if both constraints bind, then the relaxation to in-
equality constraints is without loss. If η = 0, then U∗ = 0 is clearly optimal. However, for
any choice of F ∗, we have∫

E

ρqh(e)

U∗ + c− cF ∗(e)
de =

∫
E

ρqh(e)

c− cF ∗(e)
de ≥

∫
E

ρqh(e)

c
de ≥ ρqr

c
> 1

where the final equality follows from, by Assumption 2, ρ > c(r+r)
qr2

, which implies ρqr
c
>

r+r
r
> 1. Thus, U∗ = 0 is not feasible. Therefore, η > 0 and U∗ > 0.

Fixing the optimal value of U∗, it is clear that the optimal investigation F ∗ must solve

min
F∈F

∫
E

(
ηρqh(e)

U∗ + c− cF (e)
− λF (e)

)
de− η + λ− λe. (13)

We have λ > 0; otherwise F ∗(e) = 0 for all e, which violates
∫ 1

0
(1− F ∗(e))de ≤ e.

The restriction that F be a CDF and therefore increasing requires the use of ironing
techniques to solve (13). By Theorem 3.1 of Toikka (2011), F ∗(e) = argminx∈[0,1]

ηh(e)ρq
U∗+c−cx −

λx. The objective is differentiable, so first-order conditions are necessary. Taking the first-

42 This theorem requires a Slater condition hold, namely there exist U,F such that both constraints are
slack. Such U,F can be found by setting F (e) = 1 for all e > 0 and U > ρqr.
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order condition, whenever F ∗(e) ∈ (0, 1), we have

ηρqh(e)

(U∗ + c− cF ∗(e))2
− λ = 0.

Letting k =
√

ηρq
cλ

, we can rewrite the above equation as F ∗(e) = U∗

c
+1−k

√
h(e) whenever

F ∗(e) ∈ (0, 1). F ∗(e) = 0 whenever ηh(e)ρq

c(U
∗
c
+1)2

− λ > 0; this condition simplifies to U∗

c
<

k
√
h(e) − 1. Similarly, F ∗(e) = 1 whenever ηh(e)ρq

c(U
∗
c
)2

− λ < 0, or alternatively, when U∗

c
>

k
√
h(e). That U∗ = Uα

P (F
∗) follows from the fact that the first constraint in (12) holds with

equality. Q.E.D.

We again derive the comparative results when reputational payoffs are
∫
Θ
r(θ)dν2(θ|m, a, e);

the results are identical to those presented in the text, with the exception of comparative
statics onG, where we maintain the assumptions of the baseline model (namely, r = r = 1).

Proof of Proposition 2

Proof. Fix an investigation F and distribution G of s. Taking the derivative of the expres-
sion in (7) with respect to ρ, we have

−dU
α
P (F )

dρ

∫
S

ρqr(s)

(Uα
P (F ) + c− cF (ẽs))2

dG(s) +

∫
S

qr(s)

Uα
P (F ) + c− cF (ẽs)

dG(s) = 0. (14)

By (7),
∫
S

qr(s)
Uα
P (F )+c−cF (ẽs)

dG(s) = 1
ρ
. Substituting this into (14) and simplifying, we get

(
dUα

P (F )

dρ
)−1 = q

∫
S

ρ2r(s)

(Uα
P (F ) + c− cF (ẽs))2

dG(s)

= q

∫
S

r(s)dG(s)

∫
S

(
ρ

Uα
P (F ) + c− cF (ẽs)

)2
r(s)dG(s)∫
S
r(s′)dG(s′)

≥ q

∫
S

r(s)dG(s)

(∫
S

ρr(s)dG(s)

Uα
P (F ) + c− cF (ẽs)

· 1∫
S
r(s′)dG(s′)

)2

= q

∫
S

r(s)dG(s)

(
1

q
· 1∫

S
r(s′)dG(s′)

)2

=
1

q
∫
S
r(s)dG(s)

,

where the inequality follows by Hölder’s inequality and the third equality follows from∫
S

ρr(s)dG(s)
Uα
P (F )+c−cF (ẽs)

= 1
q

by (7). Thus, dU
α
P (F )

dρ
≤ q

∫
S
r(s)dG(s) = E[r(θ)]. By Lemma 3, we have

dV α(F )
dρ

= 1
c
[E[r(θ)]− dUα

P (F )

dρ
] ≥ 0. An analogous argument shows the comparative static for
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q.

Next, we look at first-order stochastic dominance shifts of the distribution of s when r =
r = 1. By Lemma 3, it suffices to show that P ’s equilibrium expected utility is lower under
G than G̃. Let U and Ũ be P ’s equilibrium expected utility under G and G̃ respectively. For
the sake of contradiction, suppose U > Ũ . We have that

1 =

∫
S

ρq

Ũ + c− cF (ẽs)
dG̃(s) >

∫
S

ρq

U + c− cF (ẽs)
dG̃(s) ≥

∫
S

ρq

U + c− cF (ẽs)
dG(s).

This holds because the integrand is increasing in s and decreasing in U , and G̃ first-order
stochastically dominates G. which contradicts the fact that

∫
S

ρq
U+c−cF (ẽs)

dG(s) = 1. There-
fore, Ũ ≥ U . Q.E.D.

Proof of Proposition 3

Proof. Fix the value of q. Take ρ̃, ρ with ρ̃ > ρ and corresponding optimal investigations F̃
and F . Let Ũ and U be P ’s equilibrium expected utility for ρ̃, F̃ and ρ, F respectively.

We first show that Ũ ≥ U . For the sake of contradiction, suppose U > Ũ . Optimality
of F requires

∫
S

ρqr(s)g(s)
U+c−cF (ẽs)

ds ≤
∫
S

ρqr(s)g(s)

U+c−cF̃ (ẽs)
ds: if not, then the investigator could choose F ′

and some U ′′ < U such that
∫
S

ρqr(s)g(s)

U ′′+c−cF̃ (ẽs)
ds < 1, contradicting the optimality of U and F

in (1) when the weight on reputation is ρ. We then have

1 =

∫
S

ρqr(s)g(s)

U + c− cF (ẽs)
ds ≤

∫
S

ρqr(s)g(s)

U + c− cF̃ (ẽs)
ds <

∫
S

ρ̃qr(s)g(s)

Ũ + c− cF̃ (ẽs)
ds = 1,

a contradiction. Thus, Ũ ≥ U .

By Theorem 2, there exists k and k̃ such that F (e) = F (e; k, U) and F̃ (e) = F (e; k̃, Ũ).
F (·; k′, U ′) is decreasing in U ′ and increasing in k′. Because Ũ ≥ U , Bayes plausibility
(namely,

∫ 1

0
(1− F (e))de = e =

∫ 1

0
(1− F̃ (e))de) then requires k̃ ≥ k, with strict inequality if

and only if Ũ > U .

The proposition trivially holds if F̃ = F . Suppose F̃ ̸= F . Then Ũ > U and k̃ > k.
We now argue that F̃ cannot cross F from above, which, given they have the same mean,
directly implies F second-order stochastically dominates F̃ and is more informative. For
the sake of contradiction, suppose F̃ crosses F from above (which must occur if F̃ crosses
F more than once). That is, ∃ e1 < e2 such that F (e1) < F̃ (e1) and F̃ (e2) < F (e2). Because
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F̃ (e1) ≤ F̃ (e2), we then must have F̃ (e1), F̃ (e2) ∈ (0, 1), which implies

U

c
+ 1− k

√
h(e1) ≤ F (e1) < F̃ (e1) =

Ũ

c
+ 1− k̃

√
h(e1),

Ũ

c
+ 1− k̃

√
h(e2) = F̃ (e2) < F (e2) ≤

U

c
+ 1− k

√
h(e2).

Adding these inequalities together and simplifying, we get
√
h(e1) <

√
h(e2). But this

contradicts the fact that h is decreasing.

An analogous argument shows that informativeness is decreasing in q holding ρ fixed.
Q.E.D.

Proof of Proposition 4

Let g and g̃ be the densities corresponding to G and G̃ respectively and let F ∗ be the
optimal investigation under G. Take h(e) = g(e + c) and h̃(e) = g̃(e + c) for e ∈ (0, 1) and
let h be the ironed version of h. We first prove a useful result given the log concavity of g.

Lemma 8. If g is log concave, then 1√
h(e)

is convex.

Proof. We note that h is decreasing, strictly so on some interval only if h = h and h is
strictly decreasing on that interval; otherwise h is constant. Log concavity of g immedi-
ately implies log concavity of h. Because h is log concave, it is single peaked and there
exists a cutoff ec such that h is constant on [0, ec] and decreasing on [ec, 1]. Because 1√

h(e)
is

increasing on [ec, 1] and constant on [0, ec], to show convexity, it suffices to show that 1√
h(e)

is convex on [ec, 1].

Take e1, e2 ∈ [ec, 1] and λ ∈ (0, 1). By log-concavity of h, we have

log(
1√

h(λe1 + (1− λ)e2)
) = −1

2
log(h(λe1 + (1− λ)e2))

≤ −1

2

(
λ log(h(e1)) + (1− λ) log(h(e2))

)
= λ log(

1√
h(e1)

) + (1− λ) log(
1√
h(e2)

)

≤ log(λ
1√
h(e1)

+ (1− λ)
1√
h(e2)

),

where the first inequality follows from log-concavity of h and the second because log is a
concave function. Thus, 1√

h(λe1+(1−λ)e2)
≤ λ 1√

h(e1)
+ (1 − λ) 1√

h(e2)
, namely 1√

h
is convex on
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[e1, e2], which, because h = h on [ec, 1], implies 1√
h(e)

is convex on [ec, 1].

Q.E.D.

With this result in hand, we turn to the proof of the proposition.

Proof. Let Uα
P (F ; g) and Uα

P (F ; g̃) be P equilibrium expected utility with investigation F

and distribution g and g̃ respectively. Take a distribution F ∗ which is optimal given g. By

Theorem 2, for some k ∈ R+, F ∗(e) =
Uα
P (F ∗;g)

c
+1−k

√
h(e) when this expression is in (0, 1).

We will show Uα
P (F

∗; g) ≥ Uα
P (F

∗; g̃).

Let e∗ = min Supp(F ∗) and e∗ = max Supp(F ∗). Because g̃ is a pivotal mean-preserving
contraction of g, h̃(e) = h(e) for all e ̸∈ (e∗, e∗), G̃(c) = G(c) and G̃(1 + c) = G(1 + c). Then

ρqG(c)

Uα
P (F

∗; g) + c
+

∫ 1

0

ρqh(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de+

ρq(1−G(1 + c))

Uα
P (F

∗; g)

− ρqG̃(c)

Uα
P (F

∗; g) + c
+

∫ 1

0

ρqh̃(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de+

ρq(1− G̃(1 + c))

Uα
P (F

∗; g)

=

∫ e∗

e∗

ρqh(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de−

∫ e∗

e∗

ρqh̃(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de

=

∫ e∗

e∗

ρqh(e)

ck
√
h(e)

de−
∫ e∗

e∗

ρqh̃(e)

ck
√
h(e)

de

≥ 0,

where the inequality follows because 1√
h(e)

is a convex function by Lemma 8 and g̃ is a

pivotal mean-preserving contraction of g.

For the sake of contradiction, suppose Uα
P (F

∗; g) < Uα
P (F

∗; g̃). Then

1 =

∫
S

ρqg̃(s)

Uα
P (F

∗; g̃) + c− cF ∗(ẽs)
ds

=
ρqG̃(c)

Uα
P (F

∗; g̃) + c
+

∫ 1

0

ρqh̃(e)

Uα
P (F

∗; g̃) + c− cF ∗(e)
de+

ρq(1− G̃(1 + c))

Uα
P (F

∗; g̃)

<
ρqG̃(c)

Uα
P (F

∗; g) + c
+

∫ 1

0

ρqh̃(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de+

ρq(1− G̃(1 + c))

Uα
P (F

∗; g)

≤ ρqG(c)

Uα
P (F

∗; g) + c
+

∫ 1

0

ρqh(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de+

ρq(1−G(1 + c))

Uα
P (F

∗; g)

=

∫
S

ρqg(s)

Uα
P (F

∗; g) + c− cF ∗(ẽs)
ds

55



which is a contradiction of
∫
S

ρqg(s)
Uα
P (F ∗;g)+c−cF ∗(ẽs)

ds = 1. Therefore, Uα
P (F

∗; g) ≥ Uα
P (F

∗; g̃),
which, by Lemma 3, implies the investigator is better off under g̃ than g when holding
the investigation fixed at F ∗. Allowing the investigator to optimize the investigation after
moving to g̃ can only make the investigator better off. Q.E.D.

E. Proofs from Section 6

Before stating the proof of Proposition 5, we first formally define an equilibrium in the
commitment model. We endow X with the metric d(x, x′) =

∫
E
|x(e) − x′(e)|dF (e).43 An

equilibrium is given by a strategy ξ : Θ → ∆(X ) and a belief system ν : X → ∆(Θ) such
that

1. ν is obtained from ξ using Bayes rule whenever possible44 with Supp(ν(·|x)) ⊆ {θ :

x ∈ Supp(ξ(·|θ))} if {θ : x ∈ Supp(ξ(·|θ))} ≠ ∅,

2. ξ(X ∗
θ |θ) = 1 where X ∗

θ ≡ argmaxx∈X
∫
E
u(θ, e, x(e),

∫
Θ
r(θ)dν(θ|x))dF (e).

We continue to impose the D1 refinement on equilibrium (as in Ramey (1996)). In the
context of our game, this is defined as follows. Let Uθ be type θ’s equilibrium payoff. Take
any x that is not in the support of ξ(·|θ) for any θ ∈ Θ. Suppose there exists Θ′ ⊆ Θ such
that, for each θ′′ ̸∈ Θ′, there exists θ′ ∈ Θ′ such that

{ν ∈ ∆(Θ) :

∫
E

u
(
θ′′, e, x(e),

∫
Θ

r(θ)dν(θ)
)
dF (e) > Uθ′′}

⊊ {ν ∈ ∆(Θ) :

∫
E

u
(
θ′, e, x(e),

∫
Θ

r(θ)dν(θ)
)
dF (e) > Uθ′}.

Then an equilibrium with belief system ν violates D1 if the support of ν(·|x) is not contained
in Θ′. An equilibrium satisfies D1 if it does not violate D1.

Proof of Proposition 5

Proof. Throughout, given an equilibrium (ξ, ν)we denote R(x) =
∫
Θ
r(θ)dν(θ|x) as the

reputation payoff for x. Also define Xs ≡ argmaxx
∫
E
(c + e − s)x(e)dF (e). We split the

proof into several steps.

Step 1 (Equilibrium Construction): Let each ξ(xs|s) = 1 for all s ∈ S and define
P ’s equilibrium mixing strategy ξ(·|P ) ∈ ∆({xs}s∈S) by the Radon-Nikodym derivative

43 Formally, we take the DM’s choices to be an equivalence class of functions x that differ only on zero
probability events.

44 That is, for all Borel Θ̂ ⊆ Θ and X̂ ⊆ X ,
∫
Θ̂
σ(X̂|θ)dν0(θ) =

∫
X̂
ν1(Θ̂|x)

∫
Θ
dξ(x|θ)dν0(θ).
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dξ(xs|P )
dG(s)

= q
1−q [

ρr(s)
Uα
P (F )+c−cF (ẽs)

− 1].45 Set equilibrium beliefs ν(s|x) = Uα
P (F )+c−cF (ẽs)

ρr(s)
, ν(P |x) =

1 − ν(s|x) for x ∈ Xs, and ν(P |x) = 1 otherwise; this leads to R(x) =
Uα
P (F )+c−cF (ẽs)

ρ
for

x ∈ Xs and R(x) = 0 otherwise. We note that Uα
P (F ) = −c

∫
E
xs(e)dF (e) + ρR(xs) for all

s ∈ S.

It is clear that these strategies generate the same outcomes as in ex-ante signaling. By
Lemma 2 there is no incentive to deviate to any x ∈ ∪s∈SXs, and no incentive to deviate to
other x because R(x) = 0.46

Finally, we show that the off-path reputations are consistent with D1. Take any x ̸∈
{xs}s∈S . D1 rules out ν(P |x) = 1 only if there exists an s such that

{ν ∈ ∆(Θ) : −c
∫
E

x(e)dF (e) + ρ

∫
Θ

r(θ)dν(θ) ≥ Uα
P (F )}

⊊ {ν ∈ ∆(Θ) :

∫
E

(e− s)x(e) + ρ

∫
Θ

r(θ)dν(θ) ≥
∫
E

(e− s)xs(e) + ρR(xs)}.

The left-hand side above is non-empty.47 Using the fact that Uα
P (F ) = −c

∫
E
xs(e)dF (e) +

ρR(xs), the above statement is equivalent to∫
E

(c+ e− s)xs(e)dF (e) <

∫
E

(c+ e− s)x(e)dF (e),

which contradicts xs ∈ Xs. Therefore, ν(P |x) = 1 is consistent with D1.

Step Two (Outcome Equivalence): We show that all other equilibria are outcome equiv-
alent in two steps. Take any equilibrium with corresponding strategies {ξ(·|θ)}θ∈Θ and be-
lief system ν. First, we show that in any equilibrium s types must only choose from Xs (i.e.,
ξ(Xs|s) = 1). Second, we show ξ(Xs|P ) must take the form specified in Step One.

We first establish that, across all equilibria, a bound on the ex-post belief that θ ∈ S

holds.

Claim 4. ν(S|x) < 1 for all x ∈ X .

Proof. For the sake of contradiction, suppose there exists x ∈ X such that ν(S|x) = 1. Then
R(x) ≥ r. By Bayes’ plausibility, there must exist x′ ∈ X ∗

P such that ν(S|x′) ≤ q, which

45 It is straightforward to check that
∫
S
dξ(xs|P ) = 1 given the definition of Uα

P (F ).
46 As shown in Lemma 2, Uα

P (F ) ≥ ρqr − c > 0.
47 Take x′ ∈ {xs}s∈S such that ν(S|x′) ≤ q (such an x′ exists by Bayes plausibility), which implies Uα

P (F ) ≤
ρR(x′) ≤ ρqr. Setting ν with mass only on argmaxs∈S r(s) is associated with a utility of at least ρr − c. If
the set on the left-hand side was empty, then ρr − c ≤ Uα

P (F ) ≤ ρqr or ρ ≤ c
r(1−q) , which contradicts (using

Assumption 2) ρ ≥ c(r+r)
r2−qr2

≥ c
r−qr ≥ c

r(1−q) .
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implies R(x′) ≤ qr. For x′ to be in X ∗
P , we must have

−c
∫
E

x′(e)dF (e) + ρR(x′) ≥ −c
∫
E

x(e)dF (e) + ρR(x). (15)

Using our bounds on R(x) and R(x′), this implies −c + ρr ≤ ρqr, or ρ ≤ c
r−qr ≤ c(r+r)

r2−qr2 , a
contradiction of Assumption 2. Q.E.D.

Next, we show X ∗
s ⊆ Xs for all s ∈ S. For the sake of contradiction, suppose there exists

x ∈ X ∗
s \Xs for some s. Fixing this s and x, there are two cases to consider: cl(X ∗

P ) ∩ Xs ̸= ∅
and cl(X ∗

P ) ∩ Xs = ∅ where cl(X ∗
P ) is the closure of X ∗

P .

In the first case, where cl(X ∗
P ) ∩ Xs ̸= ∅, there exists a sequence of {x′n}∞n=0 such that

x′n ∈ X ∗
P for all n and, for x′ = limn→∞ x′n, x′ ∈ Xs. P then weakly prefers x′n to x and s

weakly prefers x to x′n:

−
∫
E

cx′n(e)dF (e) + ρR(x′n) ≥ −
∫
E

cx(e)dF (e) + ρR(x),∫
E

(e− s)x(e)dF (e) + ρR(x) ≥
∫
E

(e− s)x′n(e)dF (e) + ρR(x′n).

Adding these inequalities and simplifying, we get
∫
E
(c+ e− s)(x(e)− x′n(e))dF (e) ≥ 0 for

all n. Taking the limit as n→ ∞ yields
∫
E
(c+ e− s)(x(e)− x′(e))dF (e) ≥ 0, a contradiction

to x′ ∈ Xs and x /∈ Xs.

Now consider the second case, when cl(X ∗
P ) ∩ Xs = ∅. Take any x′ ∈ X ∗

P . Because
xs ̸∈ cl(X ∗

P ), we have xs ̸∈ Supp(ξ(·|P )), so for ν(S|xs) < 1, it must be that
{
s′ : xs ∈

Supp{ξ(·|s′)}
}
= ∅. D1 then requires that ν(S|xs) = 1 if

{ν ∈ ∆(Θ) : −c
∫
E

xs(e)dF (e) + ρ

∫
Θ

r(θ)dν(θ) > −c
∫
E

x′(e)dF (e) + ρR(x′)} (16)

⊊ {ν ∈ ∆(Θ) :

∫
E

(e− s)xs(e) + ρ

∫
Θ

r(θ)dν(θ) >

∫
E

(e− s)x(e)dF (e) + ρR(x)}.

By analogous arguments to those in Step 1, the left-hand side of (16) is non-empty. Because
x′ ∈ X ∗

P , we have −c
∫
E
x′(e)dF (e)+ρR(x′) ≥ −c

∫
E
x(e)dF (e)+ρR(x). Therefore, (16) holds

if

{ν ∈ ∆(Θ) : −c
∫
E

xs(e)dF (e) + ρ

∫
Θ

r(θ)dν(θ) > −c
∫
E

x(e)dF (e) + ρR(x)}

⊊ {ν ∈ ∆(Θ) :

∫
E

(e− s)xs(e) + ρ

∫
Θ

r(θ)dν(θ) >

∫
E

(e− s)x(e)dF (e) + ρR(x)}.
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After some simplification, strict inclusion holds if
∫
E
(c+e−s)(xs(e)−x(e))dF (e) > 0, which

holds because x /∈ Xs. Thus, ν(S|xs) = 1, which contradicts Claim 4. Therefore, X ∗
s ⊆ Xs.

Thus, all equilibrium strategies for a probability one set of s types are outcome equivalent
to xs with probability one.

Next, we argue that ξ(·|P ) and Ξ(·) ≡
∫
S
ξ(·|s)dG(s) must be mutually absolutely con-

tinuous. Claim 4 implies that Ξ(·) is absolutely continuous with respect to ξ(·|P ). For the
sake of contradiction, suppose ξ(·|P ) is not absolutely continuous with respect to Ξ(·). If
not, then because ξ(X ∗

P |P ) = 1, there exists X ′ ⊆ X ∗
P such that ξ(X ′|P ) > 0 = Ξ(X ′).

Then R(x) = 0 for some x ∈ X ′ and, because x ∈ X ∗
P , P ’s equilibrium expected utility is

−c
∫
E
x(e)dF (e). But, by Bayes plausibility, there exists x′ ∈ Supp(Ξ) such that ν(S|x′) ≥ q,

which implies R(x′) ≥ qr, in which case P can achieve a utility of −c
∫
E
x′(e)dF (e) +

ρR(x′) ≥ ρqr − c > 0 ≥ −c
∫
E
x(e)dF (e). Thus, choosing x is strictly dominated by x′,

contradicting x ∈ X ∗
P . Given that all s must choose only from Xs and, for probability one

set of s, all x ∈ Xs lead to equivalent actions with probability one, the fact that P has a
unique mixing strategy over Xs follows from the same arguments as in Lemma 2. Q.E.D.

Next, we turn to the optional commitment model. Let λ ∈ ∆([−δ, δ]) be the distribution
over ε. An equilibrium consists of a strategy at the communication stage σ : Θ → ∆(X∪M),
a follow up strategy at the decision stage ζ : Θ ×M × E × [−δ, δ] → ∆({0, 1}) and belief
systems ν1 : X ∪M → ∆(Θ), ν2 : (M × E × A) → ∆(Θ× [−δ, δ]) such that

1. ν1 is obtained from Bayes rule whenever possible, with Supp(ν1(·|x)) ⊆ {θ : x ∈
Supp(σ(·|θ))} if {θ : x ∈ Supp(σ(·|θ))} ≠ ∅,

2. ν2(·|m, e, a) is obtained from Bayes rule whenever possible given prior ν1(·|m) for
m ∈M ,

3. For each m, θ, e, ζ(A∗
θ,m,e,ε|θ,m, e, ε) = 1 where

A∗
θ,m,e,ε ≡ arg max

a∈{0,1}
u(θ, e, a,

∫
Θ

r(θ)dν2(θ|m, e, a)) + εa,

4. For each θ, σ(Y∗
θ |θ) = 1 where

Y∗
θ ≡ arg max

y∈M∪X

∫
E

[
1(y ∈M)

{∫ δ

−δ

(
max
a∈{0,1}

u(θ, e, a,

∫
Θ

r(θ)dν2(θ|y, a, e)) + εa
)
dλ(ε)

}
+ 1(y ∈ X )u(θ, e, y(e),

∫
Θ

r(θ)dν1(θ|y))
]
dF (e),
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where ε does not appear in the utility following y ∈ X because it is mean zero. Notice that
ζ only takes effect if a cheap-talk message is sent. We again impose the D1 refinement on
the choice of x ∈ X (as defined in the commitment model) and on the choice of a following
a cheap-talk message (as defined in our baseline model).

Proof of Proposition 6

We prove the result under the differential type reputation model under, in addition to
Assumption 2, the following assumption:

Assumption 3. ρ > 2max{ δ
qr
, δ
r−qr}.

This reduces to our assumption in Proposition 6 when r = r = 1.

Proof. We first show equilibrium existence. Take the same strategies (and beliefs following
x ∈ X ) as in the commitment model with σ(M |θ) = 0 for all θ and set ν1(P |m) = 1 following
any m ∈ M , ζ(1|θ,m, e, a) = 1(1 ∈ argmaxa u(θ, e, a, 0)) and ν2(P × [−δ, δ]|m, e, a) = 1. By
Proposition 5, no type has an incentive to deviate to any other commitment x ∈ X and the
equilibrium satisfies D1. We only need to check that no type has an incentive to deviate to
send m ∈ M . For P , his expected equilibrium utility is Uα

P (F ) and, as shown in the proof
of Lemma 2, Uα

P (F ) ≥ ρqr − c. The value he can get from deviating to send m is at most∫
E

∫ δ

−δ
max{−c+ ε, 0}dλ(ε)dF (e) ≤ max{−c+ δ, 0}.

That sending such anm is sub-optimal follows from ρqr−c > 0 by ρ > c(r+r)
qr2

> c
qr

(Assump-
tion 2) and ρqr − c > −c + δ by ρ > δ

qr
(Assumption 3). Now consider s ∈ S. By Uα

P (F ) =

−c(1−F (ẽs))+ρR(xs), we have ρR(xs) ≥ Uα
P (F )+c(1−F (ẽs)) ≥ ρqr−cF (ẽs) ≥ ρqr−c. Type

s’s utility from sending m is
∫
E

∫ δ
−δmax{e−s+ ε, 0}dλ(ε)dF (e) ≤

∫
E
max{e−s+ δ, 0}dF (e).

He has no incentive to deviate if∫
E

(e− s)xs(e)dF (e) + ρR(xs) ≥
∫
E

max{e− s+ δ, 0}dF (e).

After simplifying and substituting in our bound for ρR(xs), it suffices to show ρqr − c ≥ δ,
or ρ ≥ δ+c

qr
. This follows by Assumption 2 if c > δ and Assumption 3 if δ ≥ c. Therefore, s

has no incentive to deviate.

To complete the proof, we only need to prove that all equilibria are outcome equivalent
to ex-ante signaling. Take an equilibrium E . If ΣN(M) = σ(M |P ) = 0, then the same
arguments as in Proposition 5 show that the equilibrium outcome is equivalent to ex-ante
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signaling. Suppose that ΣN(M) > 0 or σ(M |P ) > 0. We first show σ(·|P ) and ΣN(·) =∫
S
σ(·|s)dG(s) are mutually absolutely continuous over M . Suppose there exists M ′ ⊆ M

such that σ(M ′|P ) > 0 or ΣN(M
′) > 0. If ΣN(M

′) = 0 < σ(M ′|P ), then for some m ∈ M ′,
ν1(P |m) = 1 and the reputation followingm is always 0. Thus, P attains a maximum utility
of max{−c + δ, 0} from sending m. However, the P type can attain at least ρqr − c − δ by
mimicking some s type whose expected equilibrium reputation is at least qr (such s exist
by Bayes plausibility). Because ρ > 2δ

qr
by Assumption 3 and ρ > c(r+r)

qr2
by Assumption 2,

this is a contradiction.

If σ(M ′|P ) = 0 < ΣN(M
′), then there exists m ∈ M ′ such that ν1(S|m) = 1 and the

reputation is at least r for each action at the decision stage. By Bayes plausibility, there
exists y ∈ M ∪ X such that ν1(S|y) ≤ q. If y ∈ X , then the reputation following y is at
most qr. If y ∈ M , then the expected equilibrium reputation for P following y is at most
qr (Hart and Rinott (2020)). Then m is a profitable deviation from y for any type of DM as
they can choose an optimal action for each (e, ε) realization and still have a strictly higher
reputation as qr < r by Assumption 2. Therefore, ΣN(M

′) > 0 if and only if σ(M ′|P ) > 0

for all M ′ ⊆M .

Suppose there exists s and m ∈ M such that m is an optimal message for s and P (i.e.,
m ∈ Y∗

s ∩ Y∗
P ) and s or P do not choose actions consistent with xs(e) following m (for

a probability one set of e, ε); namely,
∫
E

∫ δ
−δ ζ(xs(e)|θ,m, e, ε)dλ(ε)dF (e) < 1 for θ ∈ {s, P}.

TakeR(m, e, a) =
∫
Θ

∫ δ
−δ r(θ)dν2((θ, ε)|m, e, a) andR(x) =

∫
Θ
r(θ)dν1(θ|x). Now consider the

difference in payoff between sending message m in equilibrium and taking commitment
xs for types s and P as a function of e, ε. For type s, this is given by∫

E

∫ δ

−δ

(
max{e− s+ ε+ ρR(m, e, 1), ρR(m, e, 0)} − (e− s+ ε)xs(e)− ρR(xs)

)
dλ(ε)dF (e),

(17)

and for P , it is given by∫
E

∫ δ

−δ

(
max{−c+ ε+ ρR(m, e, 1), ρR(m, e, 0)} − (−c+ ε)xs(e)− ρR(xs)

)
dλ(ε)dF (e). (18)

Notice that the integrand for s in (17) is weakly less than the integrand for P in (18) for
every e, ε and so this comparison holds for the expressions themselves.

Suppose towards a contradiction that (17) is strictly less than (18). First, consider that
the commitment xs ∈ Y∗

P . Since m ∈ Y∗
P , (18) is 0 and so by hypothesis (17) is strictly

negative which contradicts that m ∈ Y∗
s . Therefore, xs /∈ Y∗

P , which we will show implies
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ν1(P |xs) = 0. The only way ν1(P |xs) > 0 given xs /∈ Y∗
P is if xs /∈ Supp(σ(·|s)) for all s ∈ S.

The strict inequality holds between (17) and (18) for everyR(xs). IfR(xs) = r, then because
P ’s equilibrium payoff is less than ρqr+max{δ−c, 0}, (18) is less than ρqr+max{δ−c, 0}−
(ρr−c) < 0, by Assumption 2 and Assumption 3. IfR(xs) = 0 then because P ’s equilibrium
payoff is greater than ρqr− c− δ, (18) is greater than ρqr− c− δ > 0 again by Assumption 2
and Assumption 3. So the s type prefers xs for a strictly larger set of beliefs than the P type,
so by the D1 refinement, ν1(P |xs) = 0.

Thus, ν1(P |xs) = 0, R(xs) ≥ r and P ’s utility from xs is at least ρr − c. His equilibrium
utility is again bounded above by ρqr + max{δ − c, 0} which means that P would want to
deviate to xs again by Assumption 2 and Assumption 3, a contradiction.

This means that (17) is equal to (18). Since the integrands in (17) is weakly point wise
lower than (18) for each (e, ε), this requires that these integrands are equal to a probability
one set of (e, ε). This is equivalent to e > s− c =⇒ −c+ ε+ ρR(m, e, 1) > ρR(m, e, 0) and
e < s− c =⇒ −c+ ε+ ρR(m, e, 1) < ρR(m, e, 0) for a probability one set of (e, ε). Thus, if
(17) is equal to (18), then

∫
E

∫ δ
−δ ζ(xs(e)|θ,m, e, ε)dλ(ε)dF (e) = 1 for θ ∈ {s, P}.

Let t(s) ≡ max{t : xt ∈ Xs} and M̃s ≡ {m :
∫
E

∫ δ
−δ ζ(xs(e)|P,m, e, ε)dλ(ε)dF (e) = 1}.

Our previous conclusion implies σ(M̃t(s)|s) = σ(M |s) ∀s: otherwise, if σ(M ′|s) > 0 for some
M ′ ⊆ M\M̃t(s), then there exists m ∈ M ′ such that

∫
E

∫ δ
−δ ζ(xs(e)|P,m, e, ε)dλ(ε)dF (e) < 1,

which contradicts our previous conclusion.

Next, we show that for any ν(S|x) < 1 for all x ∈ X . Suppose not, then R(x) ≥ r, so P ’s
expected utility from x is at least −c + ρr. By Bayes’ plausibility, there exists y ∈ Y∗

P such
that ν1(S|y) ≤ q. P ’s expected material payoff following any y is at most max{−c + δ, 0}
and his expected reputational payoff is at most ρqr, so his expected utility from y is at most
max{−c+ δ, 0}+ ρqr, which is less than −c+ ρr as argued above. Thus, ν(S|x) < 1.

If x ∈ Supp(σ(·|s)) for some s ∈ S, then x ∈ Supp(σ(·|P )); otherwise, ν(S|x) = 1.
By the same arguments as in Proposition 5, Supp(σ(·|s)) ∩ X ⊆ Xs. This means that for a
probability one set of s and e, the distribution over actions is the same as that under ex-ante
signaling.

So σ(M̃t(s) ∪ Xt(s)|s) = 1 ∀s ∈ S. Since we established that P also follows xs with
probability 1 after y ∈ M̃t(s) ∪ Xt(s), P ’s expected utility from y ∈ M̃t(s) ∪ Xt(s) is −c(1 −
F (ẽs)) + ρ

∫
Θ
r(θ)dν1(S|y). We can specify P ’s mixing probability over Mt(s) ∪ Xt(s) via a

Radon-Nikodym derivative. By the arguments in Lemma 2, there is a unique such Radon-
Nikodym derivative that leaves P indifferent; this mixing only depends on the expected
material utility and the interim beliefs over S at each y, and since these are the same as that
under ex-ante signaling, we obtain the same outcomes for P . Therefore, the equilibrium
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outcome must be the same as in ex-ante signaling. Q.E.D.

Proof of Proposition 7

Proof. P ’s expected utility conditional on e0 is Uα
P (F1(·|e0)). By an analogous proof to that

in Lemma 3, P(a = 1|e0) = 1
c
(ρE[r(θ)]− Uα

P (F1(·|e0))). Thus,

P(a = 1) =

∫
E

P(a = 1|e0)dF0(e0) =
1

c
[ρE[r(θ)]−

∫
E

Uα
P (F1(·|e0))dF0(e0)].

The proposition then follows immediately from convexity of Uα
P (·). Q.E.D.

Proof of Proposition 8

Recall that r(s)g(s) is assumed to be continuous in s (rather than just g being continu-
ous). That the investigator prefers ex-ante to ex-post signaling follows immediately from
Proposition 1. The fact that no mass points are used is shown in the following Lemma.

Lemma 9. For sufficiently high ρ, any optimal investigation has no mass points in (0, 1).

Proof. Take any F with a mass point on ê ∈ (0, 1). Take some small ε > 0. Consider F∆

such that F∆(e) = F (e) for all e ̸∈ (ê − ε, ê + ε) and F∆ moves ∆ mass away from ê and
splits it equally between ê− ε, ê+ ε, so F∆(e) = F (e)+ ∆

2
1(e ∈ [ê− ε, ê))− ∆

2
1(e ∈ [ê, ê+ ε]).

Let η(s;U,∆) = ρqr(s)dG(s)
U+c−cF∆(ẽs)

. As previously shown, the investigator’s utility is given by

∫
E

(e− sI)

[ ∫
S

1(ẽs ≤ e)(qdG(s) + (1− q)dσ(ms|P ))
]
dF∆(e)

=

∫
E

(e− sI)

[ ∫
S

1(ẽs ≤ e)η(s;Uα
P (F ),∆)ds

]
dF∆(e). (19)

For notational ease, we let U = Uα
P (F∆). Taking the derivative of (19) at F = F∆ with

respect to ∆, we have

dU

d∆

∫
E

(e− sI)

∫
S

1(ẽs ≤ e)
∂η(s;U,∆)

∂U
dsdF∆(e) +

∫
E

(e− sI)

∫
S

1(ẽs ≤ e)
∂η(s;U,∆)

∂∆
dsdF∆(e)

+

∫
E

(e− sI)

∫
S

1(ẽs ≤ e)η(s;U,∆)ds
d

d∆
dF∆(e). (20)

We will show that this expression, for small ε and evaluated at ∆ = 0, is strictly positive.
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We show the first term in (20) is positive. Because dη(s;U,∆)
dU

≤ 0, it suffices to show dU
d∆

≤ 0.
Because Uα

P (F∆) is characterized by
∫
S
η(s;Uα

P (F∆),∆)ds = 1, we have

0 =
dU

d∆

∫
S

∂η(s;U,∆)

∂U
ds+

∫
S

∂η(s;U,∆)

∂∆
ds.

Because ∂η(s;U,∆)
∂U

≤ 0, strictly so when g(s) > 0, dU
d∆

≤ 0 if and only if
∫
S
∂η(s;U,∆)

∂∆
ds ≤ 0.

Given the form of F∆, for sufficiently small ε we have∫
S

∂η(s;U,∆)

∂∆
ds =

1

2

[ ∫
S

1(ẽs ∈ [ê− ε, ê))
cρqr(s)g(s)

(U + c− cF∆(ẽs))2
ds

−
∫
S

1(ẽs ∈ [ê, ê+ ε])
cρqr(s)g(s)

(U + c− cF∆(ẽs))2
ds

]
< 0,

where the inequality follows from the fact that, because F∆ has a mass point on ê, F (ẽs) is
discretely higher for ẽs > ê than for ẽs < ê. Thus, dU

d∆
≤ 0.

Next, we show that the second term in (20) is positive. Let ∆F be the size of mass point
on ê. Next, we note that for small ε∫

E

(e− sI)

∫
S

1(ẽs ≤ e)
∂η(s;U,∆)

∂∆
dsdF∆(e)

=

∫
E

(e− sI)

∫
S

1(ẽs ≤ e)
1

2

[
1(ẽs ∈ [ê− ε, ê))

cr(s)g(s)qρ

(U + c(1− F∆(ẽs)))2

− 1(ẽs ∈ [ê, ê+ ε])
cr(s)g(s)qρ

(U + c(1− F∆(ẽs)))2
]
dsdF∆(e)

=
1

2

∫
S

[
1(ẽs ∈ [ê− ε, ê))

cr(s)g(s)qρ

(U + c(1− F∆(ẽs)))2

∫ ∞

ẽs

(e− sI)dF∆(e)

− 1(ẽs ∈ [ê, ê+ ε])
cr(s)g(s)qρ

(U + c(1− F∆(ẽs)))2

∫ ∞

ẽs

(e− sI)dF∆(e)
]
ds

≈ εcr(ê+ c)g(ê+ c)qρ

2

[
(ê− sI)∆F +

∫∞
ê+ε

(e− sI)dF∆(e)

(U + c(1− F∆(ê) + ∆F ))2
−

[
∫∞
ê+ε

(e− sI)dF∆(e)

(U + c(1− F∆(ê)))2

]
We claim the last line above is strictly positive for large enough ρ. Pulling out common
factors and the denominators and doing a bit of simplification, we get that the above ex-
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pression is strictly positive if

0 <

∫ ∞

ê+ε

(e− sI)dF∆(e)[(U + c(1− F∆(ê)))
2 − (U + c(1− F∆(ê) + ∆F ))2]

+ (ê− sI)∆F (U + c(1− F∆(ê)))
2

= ∆F [(ê− sI)(U + c− cF (ê))2 −
∫ ∞

ê+ε

(e− sI)dF∆(e)(2(U + c(1− F∆(ê))) + c2∆F )].

Because ê− sI > 0 and U ≥ ρqr− c in equilibrium, the last line above is strictly positive for
sufficiency large ρ.

Finally, we show the final term in (20) is positive. For small enough ε, we have∫
E

(e− sI)

∫
S

1(ẽs ≤ e)η(s;U,∆)ds
d

d∆
dF∆(e)

=
1

2
(ê− ε− sI)

∫
S

1(ẽs < ê− ε)η(s;U,∆)ds+
1

2
(ê+ ε− sI)

∫
S

1(ẽs < ê+ ε)η(s;U,∆)ds

− (ê− sI)

∫
S

1(ẽs < ê)η(s;U,∆)ds

=
1

2
(ê− sI)(

∫
S

1(ẽs ∈ [ê, ê+ ε])η(s;U,∆)ds−
∫
S

1(ẽs ∈ [ê− ε, ê))η(s;U,∆)ds)

+
1

2
ε(

∫
S

1(ẽs ∈ [ê− ε, ê+ ε])η(s;U,∆)ds)

≥ 1

2
(ê− sI)(

∫
S

1(ẽs ∈ [ê, ê+ ε])η(s;U,∆)ds−
∫
S

1(ẽs ∈ [ê− ε, ê))η(s;U,∆)ds)

≥ 0,

where the final inequality follows from the fact that, for s such that ẽs = ê, η(s− z;U,∆) is
discretely lower than η(s+ z;U,∆) for small z due to the mass point on ê.

Having shown that all terms in (20) are positive, we conclude that F can not have
been optimal as moving to F∆ for some ∆ > 0 strictly increases the investigator’s pay-
off. Q.E.D.

F. Optimal Investigation with Multiple States

While, in our main specification we consider an investigation about a binary state, many
of our results are robust to the case where the investigator specifies an information struc-
ture about a larger state space. As is well known, compactly describing the set of Bayes
plausible experiments quickly becomes intractable as the cardinality of the state space in-
creases. We therefore focus on the case where the s types’ material preferences over actions
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depend only the posterior mean about an unknown state. Here, we interpret the evidence
e ∈ E ≡ [0, 1] as the posterior mean about some state ω ∈ [0, 1],48 where the domain is
[0, 1] for expositional convenience. The state ω is distributed according to CDF K which
has strictly positive density k. Using insights from Gentzkow and Kamenica (2016) and
Kolotilin (2018), a CDF over posterior means F : [0, 1] → [0, 1] is a feasible choice for the
investigator if and only if it satisfies the following Bayes plausibility constraints:∫ e

0

F (e′)de′ ≤
∫ e

0

K(e′)de′ ∀e ∈ E, and∫ 1

0

F (e′)de′ =

∫ 1

0

K(e′)de′. (21)

The investigator’s problem can then be written in the same manner as in (1) substituting
the constraints in (21) for the Bayes plausibility constraint. We assume that g(s)r(s) is
continuous, strictly positive and, to avoid ironing complications, strictly decreasing on
[c, 1 + c]. We characterize the optimal investigation below and show that, despite the more
complicated constraint set, the main takeaways from Section 5 hold true.

Corollary 4. The optimal investigation has no mass points.

Corollary 5. If g(e+c)r(e+c)

(ρq+c(1−K(e)))2
is strictly increasing in e, then full information is uniquely optimal.

The first corollary shows that the investigator reduces the predictability of the investi-
gation by avoiding mass points. This is despite the fact that, because g is assumed to be
strictly decreasing, providing no information would yield the highest probability of a = 1

from s types. Note that unlike in Corollary 2, the possibility of boundary mass points is also
ruled out (by the constraint set). The difference is that in this context, the only reason that
F may have mass points is to limit information provision. The second corollary says that if
the cost of providing information to non-partisans is small, roughly that g decreases slowly
(or more specifically, the condition in Corollary 5), then full information is optimal.49

Let M(F, e) ≡ ρqr(e+c)g(e+c)

(Uα
P (F )+c(1−F (e)))

2 , which gives the derivative of the density of the DM’s

declaration of ms for s = e+ c. Let (e, e) be the min and max over Supp(F ∗) respectively.

Proposition 9. The optimal investigation F ∗ exists and must satisfy the following properties.

1. F ∗ is strictly increasing for e ∈ (e, e)

48 This means that the DM’s underlying objective is linear in ω.
49 While the case in which g(s)r(s) is non-monotonic is complicated, the case where g(s)r(s) is increasing

is tractable, and it can be shown that full information is optimal as in Corollary 3 for the case of two states.
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2. M(F ∗, e) is increasing on [e, e],

3. If
∫ e
0
(F (e′)−K(e′))de′ < 0 for e ∈ (e1, e2) ⊂ [e, e], then M(F ∗, e) is constant on [e1, e2]

Proof. Note that the optimum exists because the constraint set is compact and the objective
is continuous in (F,U). Let U = Uα

P (F
∗) for the optimal F ∗. Then

∫
S

ρqr(s)g(s)
U+c−cF ∗(ẽs)

ds = 1. The
optimal F ∗ must minimize

∫
S

ρqr(s)g(s)
U+c−cF (ẽs)

ds over feasible F ; if not, then the investigator
could choose an alternative F ′ such that

∫
S

ρqr(s)g(s)
U+c−cF ′(ẽs)

ds < 1, in which case Uα
P (F

′) <

Uα
P (F

∗), a contradiction of the optimality of F ∗. The optimal investigation F ∗ must then
solve

min
F∈F

∫
S

ρqr(s)g(s)

U + c− cF (ẽs)
ds , (22)

such that BP :

∫ e

0

F (e′)de′ ≤
∫ e

0

K(e′)de′ ∀e ∈ E, and∫ 1

0

F (e′)de′ =

∫ 1

0

K(e′)de′.

First, suppose for the sake of contradiction that F ∗ is constant on some interval [e1, e2) =

{e : F ∗(e) = F ∗(e1)} where F ∗(e1) ∈ (0, 1). For small ε > 0, consider a perturbation F̃ of F ∗

where

F̃ (e) =


F ∗(e) e < e1 − ε or e ≥ e2 + ε

F ∗(e1)− δ e ∈ [e1 − ε, (e1 + e2)/2],

F ∗(e1) + δ e ∈ [(e1 + e2)/2, e2 + ε],

.

where δ, ε is taken small so that F̃ is a CDF. F̃ clearly satisfies the BP constraints. The
impact of this perturbation on the objective in (22) as δ → 0 can be taken arbitrarily close to

−
∫ (e1+e2)/2

e1

M(F ∗, e)de+

∫ e2

(e1+e2)/2

M(F ∗, e)de < 0,

for small enough ε > 0, where the inequality holds because g is strictly decreasing and F ∗

is constant on this interval, contradicting the optimality of F ∗.

Next, suppose for the sake of contradiction that M(F ∗, e1) > M(F ∗, e2) for e ≤ e1 < e2 ≤
e. Take ε > 0. If e1 = e and F ∗(e) = 0 then, because M is right continuous, replace e1 with
e1 + ε so that the inequality on M still holds. Similarly if e = e2 and then replace e2 with
e2 − ε so the inequality on M still holds which is possible because M is increasing in F .
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Now take the perturbation F̃ of F ∗ given by

F̃ (e) =


F ∗(e) e /∈ [e1 − ε, e1 + ε) ∪ [e2 − ε, e2 + ε)

F ∗(e1)− δ e ∈ [e1 − ε, e1 + ε),

F ∗(e1) + δ e ∈ [e2 − ε, e2 + ε),

where δ, ε is taken small so that F̃ is a CDF. F̃ clearly satisfies the BP constraints. For small
ε, the impact of this perturbation on the objective in (22) as δ → 0 can be taken arbitrarily
close to 2ε(−M(F ∗, e1) +M(F ∗, e2)) < 0, contradicting the optimality of F ∗.

Lastly take a region (e′, e′′) where the BP constraint does not bind, but the constraint
binds at e′ and e′′. Then both the perturbation above and its opposite are available for
e′ < e1 < e2 < e′′. This means that if M(F ∗, e) is not constant on this interval, F ∗ is not
optimal. Q.E.D.

Proof of Corollary 4

Proof. If F discontinuously jumps at some e, then the BP constraint must not be binding
around e. Because g is continuous, a discontinutity in F ∗ implies M(F ∗, e) is not constant
around e, a contradiction of Proposition 9. Q.E.D.

Proof of Corollary 5

Here, for the differential type reputation model we assume r(e+c)g(e+c)
(ρE[r(θ)]+c−cK(e))2

is strictly
increasing in e.

Proof. Take e where the BP constraint binds but does not bind for some region above e.
Note that the constraint always binds at e = 0, so such an e exists. Also at such an e,
K(e) = F ∗(e). This means that M(F ∗, e′) must be constant for e′ ∈ [e, e + ε) with ε suffi-
ciently small, and as long as the BP constraint continues to not bind. Note that the con-
dition that r(e′+c)g(e′+c)

(ρE[r(θ)]+c(1−K(e′)))2
is increasing and fact that Uα

P (F
∗) ≤ ρE[r(θ)]50 implies that

r(e′+c)g(e′+c)

(Uα
P (F ∗)+c(1−K(e′)))

2 is increasing in e′ on [e, e+ ε) which implies in this region that

r(e′ + c)g(e′ + c)

(Uα
P (F

∗) + c(1−K(e′)))2
> M(F ∗, e′). (23)

50 This inequality is implied by Lemma 3, because Uα
P (F

∗) > ρE[r(θ)] implies the probability of a = 1 is
negative.

68



From (23), we conclude K(e′) > F ∗(e′). That is F ∗ grows slower than K, which means
the equality BP constraint cannot be satisfied at any higher evidence level violating the
equality constraint at e = 1. Q.E.D.

G. Optimal Design under Ex-Post Signaling

We now compare the optimal investigation under ex-ante signaling to that under ex-
post signaling. This comparison gives us insights into how the structure of optimal inves-
tigations is shaped by the presence of communication, or alternatively, the timing of the
evidence realization. Note that, by Theorem 1, the investigator will always prefer the in-
vestigation in Theorem 2 to the optimal investigation under ex-post signaling. However,
this does not say anything about the relative informativeness of these investigations, which
is especially important in applications where the evidence may be important beyond the
DM’s choice, e.g., the information a firm submits to the Environmental Protection Agency
about its environmental impact. In such settings a planner may want to impose either ex-
ante or ex-post signaling depending on which leads to a more informative investigation.
We will show that the comparison in informativeness depends on the investigator’s design
incentives when facing only non-partisans.

Recall vβ(e) is the probability of conviction as a function of the evidence given ex-post
signaling. Due to the simplicity of ex-post signaling, we can explicitly derive this convic-
tion probability in baseline model where r = r as

vβ(e) =
1

2c

(
ρq + c−

√
(ρq + c)2 − 4ρqcG(e+ c)

)
.

We can write the investigator’s design problem as

max
F∈F

∫ 1

0

vβ(e)dF (e),

such that
∫ 1

0

(1− F (e))de = e.

This design problem is a standard Bayesian persuasion problem and the following result
characterizing the optimal information structure follows immediately from Kamenica and
Gentzkow (2011).

Proposition 10. Let Cav(vβ) be the concavified value of vβ . There exists an optimal F with bi-
nary support if vβ(e) < Cav(vβ)(e) and an optimum with degenerate support on e if vβ(e) =

Cav(vβ)(e).
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An immediate implication is that if vβ is strictly concave in e, then an uninformative
investigation is uniquely optimal. Because vβ is a convex transformation of G, it is not
quite sufficient for the investigator to want to withhold information from the non-partisan.
However, if the investigator is significantly harmed by providing information to the non-
partisan, i.e., G is “sufficiently concave,” then an uninformative investigation will be op-
timal under ex-post signaling.51 Note that in these cases (and in general), the optimal
investigation under ex-ante signaling provides some information; see Corollary 2. Thus,
there are cases, namely those in which s types’ convicts significantly less when given infor-
mation, in which the optimal investigation under ex-ante signaling is more informative in
a Blackwell sense than that under ex-post signaling.

However, the comparison can also go the other way. Because vβ is a convex transfor-
mation of G, there will be parameter specifications where the ex-post signaling optimal
investigation is perfectly informative, but the investigator is harmed by providing infor-
mation to non-partisans. In these cases, because concave G implies h is decreasing in e,
Theorem 2 says that the optimal investigation under ex-ante signaling admits a positive
density when F ∗ is interior, and is thereby imperfectly informative.

A unifying feature between ex-ante and ex-post signaling is that if information increases
the s types’ conviction probability then full information is optimal under both regimes.
This means that, like under ex-ante signaling, P ’s behavior under ex-post signaling incen-
tivizes the investigator to provide more information.

Corollary 6. If r = r = 1 and G is convex on [c, 1 + c] then the optimal investigation is fully
informative under both ex-ante and ex-post signaling.

51 An example is when the standards are distributed according to the standard exponential distribution.
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